Artifact of ‘FLACK: Counterexample-Guided Fault
Localization for Alloy Models’

Guolong Zheng*, ThanhVu Nguyen*, Simén Gutiérrez Brida®, German Regis',
Marcelo F. Friast, Nazareno Aguirre, Hamid Bagheri*
*Univeristy of Nebraska-Lincoln
{gzheng, tnguyen} @cse.unl.edu, bagheri@unl.edu
TUniversity of Rio Cuarto and CONICET
{sgutierrez, gregis, naguirre } @dc.exa.unrc.edu.ar
iDept. of Software Engineering Instituto Tecnolégico de Buenos Aires
mfrias@itba.edu.ar

Abstract—This document provides instructions to setup and
execute FLACK. FLACK is an automatic fault localization tool
for Alloy. Given an Alloy model with violated assertions, FLACK
automatically outputs a list of expressions ranking based on their
suspiciousness to the error. The link to the replication pack-
age is https://github.com/guolong-zheng/flack-ae. The replication
package contains the source code of FLACK and benchmarks to
reproduce all the evaluation results in the ICSE 2021 submission.

Index Terms—Alloy, fault localization

I. INTRODUCTION

This document provides instructions to setup and execute
FLACK. FLACK is an automatic fault localization tool for
Alloy. Given an Alloy model with violated assertions, FLACK
automatically outputs a list of expressions ranking based on
their suspiciousness to the error.

II. ENVRIONMENTS

FLACK is implemented in Java 8 and uses Alloy 4.2. It has
been tested on Ubuntu 16.04 and macOS. We also provide a
docker image for ease of use.

III. EXECUTION INSTRUCTIONS
A. Obtain the Artifact

The artifact can be downloaded at IDOI. The artifact is
downloaded as a tar.gz file named flack.tar.gz. The user can
use the command tar -xvf flack.tar.gz to unzip.

B. Inventory of the Artifact
— flack\
— benchmark

— alloyfl\: Alloy models from AlloyFL
— large\: large real-world Alloy models

— src\main
— alloy\: extended Alloy with Pardinus
— finder\: source code of FLACK

— libs: sat solver jars
— solvers: sat solver dynamic link libraries
— AlloyFL: replication package of AlloyFL

IV. EXECUTION INSTRUCTIONS

In this section, we provide two ways to run FLACK: run in
docker and build from source.
A. Run in Docker

1) Dependencies: Docker(https://www.docker.com/)
2) Instructions:

iIn directory flack/, use
docker build -t flack . to build the docker
image

ii Use docker run —-it flack to start the docker
image

iii Generate TABLE III use flack icse21l, the whole
process takes aoubt one or two minutes, and result will
be written to result.cvs (please note that the ranking
information can not be generated automatically and
has to be checked manually. Due to the randomness
of Alloy, the numbers may be slightly different)

iv Generate TABLE v use
flack loc —-f bnechmark/large/ -m 5,
this process takes about 30 minutes

v Run FLACK on a single model use

flack loc -f path/to/model -m #/of/instances.

The assertion to be checked in the model need to be
rename to repair_assert_#, where # can be an arbitrary
number.

B. Build from Source

1) Dependencies:

e Java 8
« Maven(https://maven.apache.org/)
o bash
2) Instructions:
i In directory flack\, build the project use
mvn clean package, this will produce jar

files in the target\ directory
ii Generate TABLE III use:

https://figshare.com/articles/dataset/FLACK_Counterexample-Guided_Fault_Localization_for_Alloy_Models/13439894/6
https://www.docker.com/
https://maven.apache.org/

java —Djava.library .path=solvers
—cp ./libs/=:./target/flack
—1.0—jar —with—dependencies.
jar loc icse2l

this will finish in one or two minutes
iii Generate TABLE IV use:

java —Djava.library .path=solvers
—cp ./libs/=:./target/flack
—1.0—jar —with—dependencies.
jar loc —f benchmark/large/ —
m 5

this may take about 30 minutes
iv In directory flack/, run FLACK on a single model use

java —Djava.library .path=solvers
—cp ./libs/=:./target/flack
—1.0—jar —with—dependencies.
jar loc —f /path/to/model —m
#/of/instances

C. TABLE V: Compare with AlloyFL

For more details, please check AlloyFL paper and its
git repo(https://github.com/kaiyuanw/AlloyFLCore). We also
include a distribution in our package, to run AlloyFL on the
benchmark:

i Go to flack\AlloyFL\
ii Build AlloyFL use mvn clean package
iii Run AlloyFL on all models use

java —Djava.library .path=sat—
solvers —cp lib/=*:target/
aparser —1.0.jar alloyfl.hybrid.
HybridAverageFaultLocator

the total runtime for AlloyFL takes about 80 minutes

D. Illustrative Example

/flack /benchmark/ alloyfl/addr. als
example generation time:0.525
RANK LIST:

lone ((n (b listed)))
n in lookup[b,n] 1.30

(n “((b listed))) 1.30
1 in lookup[b,n] 1.30

!(n in lookup[b,n]) 1.30

1 in (b entry) 1.17
I in lookup[b,n] => 1

1.31

NNk WD —=O

in (b

analyze time(sec): 0.84
rel: 1

val: 3

Slice Out: 10

Total AST: 74

LOC: 21
evals :

368 | node: 6

E. Explaination of Output

entry) 1.00

Output Explaination

RANK LIST | The ranking list of suspicious expressions

analyze time | Total runtime

rel Number of different relations

val Number of different values

Slice out Number of AST nodes sliced out

Total AST Number of total AST nodes in the model

LOC Line of Code of the model

evals Number of instantiated expressions

Use flack loc —-f benchmark/alloyfl/addr.als -m 5

to run FLACK on addr.als with 5 pairs of instances, if

successfully installed, the output will be:

https://github.com/kaiyuanw/AlloyFLCore

	Introduction
	Envrionments
	Execution Instructions
	Obtain the Artifact
	Inventory of the Artifact

	Execution Instructions
	Run in Docker
	Dependencies
	Instructions

	Build from Source
	Dependencies
	Instructions

	TABLE V: Compare with AlloyFL
	Illustrative Example
	Explaination of Output

