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Introduction 
Architectural research is increasingly driven by application 
needs in different domains. Research and development 
efforts must systematically identify the prominent 
properties, especially the amount of inherent parallelism 
and memory access/structural patterns for a wide range of 
emerging applications. One such application domain is 
recognition. Machine vision, object/scene understanding, 
and natural language processing belong to this domain. 
Recognition systems solve what is called the inverse 
problem. Whether it is recognizing a target from SAR or 
image data, recognizing speech, understanding human 
language, identifying a person, or tracking a computer 
attack, the problem centers around recognizing an event, 
action, or object of interest in the presence of uncertainty. 
Highly data-parallel preprocessing along with multi-
granularity task and data-parallel learning and inference are 
characteristic of machine recognition systems. 

Ideally, a recognition system will perform library matching 
or classification based on features extracted from a model 
generated by an appropriate sensor. Regardless of the 
particular recognition application or the complexity of the 
sensor, recognition systems typically perform some type of 
data preprocessing, feature extraction, and matching or 
classification. While the first two stages can be 
computationally intensive, the final stage of matching or 
classification is extremely memory access intensive. As the 
gap between memory and processor speed grows, by 
Little’s Law the amount of concurrency needed to hide the 
latency of memory accesses will continue to increase. 
Memory access therefore quickly becomes the bottleneck in 
a multi-core implementation of the inference mechanism 
for matching or classification. 

To attack this problem, designers must focus on innovative 
implementations of multi-core systems, such as embedding 
memory alongside the inference logic. In this work, we 
demonstrate such an implementation for a geometric 
Bayesian inference algorithm applied to object recognition. 
Our particular multi-core mapping accounts for the memory 
bottleneck and adapts a memoization-based architecture to 
implement the inference logic. We simulate this 
implementation on the ISIS framework and demonstrate its 

effectiveness as compared to a multi-core implementation 
with a monolithic memory structure. Our simulation results 
also indicate optimal sizes for the embedded memory for 
various object recognition benchmarks. 

Geometric Bayesian Inference 
In this paper we map an object recognition algorithm hybrid 
that combines Bayesian inference with the popular 
geometric hashing method [1] to our proposed multi-core 
architecture. Geometric hashing is well-known in the 
computer-vision and medical imaging research areas for its 
low-complexity and accuracy. The addition of heuristic 
Bayesian techniques similar to those described in [2], 
makes the algorithm more tolerant of fuzzy objects such as 
distorted images or rotational and translational variants of 
the same image. 

The main idea in this algorithm is to compute a hash 
function of salient features of the object, which maps to a 
location in an artificial “hash space” in which simple 
distance metrics can be computed between the hashed 
location and nearby entries containing library features to 
match against. As a result, our architecture must implement 
a form of approximate hashing that returns multiple entries 
within a cutoff distance of the hash location, and each entry 
is weighted by its distance. Models in our library whose 
features receive the highest sum of weighted hits are 
considered matches. 

Architectural Mapping 
One obvious choice for implementing geometric hashing is 
the CA-RAM architecture [3] which places a hash function 
logic alongside conventional memory structures. Although 
this architecture can in principle be extended to perform the 
approximate hybrid approach, a natural extension to CA-
RAM which incorporates approximate matching has 
already been developed in the form of the Programmable 
Object Evaluation Memory (POEM) architecture [4].  

As shown in Figure 1, the POEM architecture matches 
stored content to an input feature vector (operand) through 
the user-definable distance function "F". Our first 
implementation of POEM on a Xilinx Virtex-2 has 4 dual-
port banks of memory, each 256 bits wide by 512 words 
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deep.  Each 256-bit row of memory represents 8 integers of 
stored feature content.  The four banks of memory are 
compared to new input feature vectors in parallel, according 
to the specified function, and the results are fed into a 
1pipelined minimization tree.  The data object associated 
with the best-responding row is returned. 

The Traveling Salesman Problem (TSP) was chosen to test 
the recall ability and accuracy of such a memory.  In 
learning mode, candidate problems are solved optimally, 
and the problem/solution pairs are stored.  A replacement 
policy which favors replacing least frequently used content 
with new inadequately represented content effectively 
flattens the response error. 

 
Figure 1: POEM Architecture. 

In this application, “F” implements the hash distance, and 
the subsequent POEM logic performs the weight 
summations. 

To effectively scale a multi-core POEM architecture to the 
geometric inference problem, our goal is to ensure that the 
match logic does not idle due to data starvation. This 
unwanted behavior often occurs in a multi-core architecture 
with a monolithic memory structure in which the bottleneck 
quickly becomes the communication between memory and 
the cores (see Figure 2).  One way to address this issue is to 
split the memory into chunks, where each chunk is 
dedicated to a particular core.  Since each core and memory 
chunk is independent in this scheme, it is important to have 
a systematic way of assigning each core to a separate piece 
of the problem. 

The way in which this is done as well as the effectiveness 
of the approach varies with the problem.  In the case of 
Bayesian inference for object recognition, the problem can 
be partitioned based on feature location within the image.  
In our approach, we recursively divide up the relevant 
features of images in the library into quadrants as shown in 
Figure 3.  As illustrated, the smallest regions are addressed 
via row and column bits, where each bit represents 
recursion into a smaller set of quadrants.  Each of the 
smallest regions are assigned to a core and memory chunk.  
When matching occurs, features from the image under 
analysis are dispatched to the appropriate core and memory 
chunk based on the location of the feature.  This 
                                                
 

dispatching process is extremely efficient and requires very 
little logic since it is based on nothing more than a grid 
discretization of the image. 

A key parameter that must be adjusted to optimize 
performance in our approach is the memory chunk size.  
This parameter depends not only on the location density of 
image features, but also on the available number of cores 
and the desired granularity.  In other words, more cores can 
be used to either match against larger image regions in 
larger images (potentially requiring larger memory chunks) 
or to match against smaller regions in smaller images (an 
increase in the granularity which potentially requires 
smaller memory chunks).  We explore this critical tradeoff 
via simulation in the ISIS framework [5]. 

 
Figure 2: A multi-core architecture with a monolithic 

main memory. 

ISIS contains a set of C++ classes that describe the 
functionality of various components of a parallel computer, 
such as processors, memories, buses, and routers.  These 
components can be assembled into a simulator and are 
easily extended to support new features.  ISIS supports MPI 
as well as cache coherence protocols for communication 
between processor elements.  With ISIS we compare a 
monolithic memory multi-core architecture to our proposed 
architecture on various object recognition benchmarks and 
provide a variety of statistics including cycle counts, 
memory access patterns, and communication latency.  The 
results indicate that our proposed architecture scales much 
better as the number of cores is increased.   

 
Figure 3: The proposed architecture for Bayesian inference 
object recognition.  The image is partitioned recursively into 
quadrants, and each region (addressable by row and column 

bits) is assigned to a core and memory chunk. 
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