
Distribution Statement “A” (Approved for Public Release, Distribution Unlimited)

This work was sponsored by DARPA/IPTO in the Architectures for
Cognitive Information Processing (ACIP) program;

Contract number FA8750-04-C-0266

Efficient Memoization Strategies for Object Recognition with a
Multi-Core Architecture

George Viamontes, gviamont@atl.lmco.com
Mohammed Amduka, mamduka@atl.lmco.com

John Russo, jrusso@atl.lmco.com
Matthew Craven, mcraven@atl.lmco.com
Thanhvu Nguyen, tnguyen@atl.lmco.com

Lockheed Martin Advanced Technology Laboratories

Introduction
Architectural research is increasingly driven by application
needs in different domains. Research and development
efforts must systematically identify the prominent
properties, especially the amount of inherent parallelism
and memory access/structural patterns for a wide range of
emerging applications. One such application domain is
recognition. Machine vision, object/scene understanding,
and natural language processing belong to this domain.
Recognition systems solve what is called the inverse
problem. Whether it is recognizing a target from SAR or
image data, recognizing speech, understanding human
language, identifying a person, or tracking a computer
attack, the problem centers around recognizing an event,
action, or object of interest in the presence of uncertainty.
Highly data-parallel preprocessing along with multi-
granularity task and data-parallel learning and inference are
characteristic of machine recognition systems.

Ideally, a recognition system will perform library matching
or classification based on features extracted from a model
generated by an appropriate sensor. Regardless of the
particular recognition application or the complexity of the
sensor, recognition systems typically perform some type of
data preprocessing, feature extraction, and matching or
classification. While the first two stages can be
computationally intensive, the final stage of matching or
classification is extremely memory access intensive. As the
gap between memory and processor speed grows, by
Little’s Law the amount of concurrency needed to hide the
latency of memory accesses will continue to increase.
Memory access therefore quickly becomes the bottleneck in
a multi-core implementation of the inference mechanism
for matching or classification.

To attack this problem, designers must focus on innovative
implementations of multi-core systems, such as embedding
memory alongside the inference logic. In this work, we
demonstrate such an implementation for a geometric
Bayesian inference algorithm applied to object recognition.
Our particular multi-core mapping accounts for the memory
bottleneck and adapts a memoization-based architecture to
implement the inference logic. We simulate this
implementation on the ISIS framework and demonstrate its

effectiveness as compared to a multi-core implementation
with a monolithic memory structure. Our simulation results
also indicate optimal sizes for the embedded memory for
various object recognition benchmarks.

Geometric Bayesian Inference
In this paper we map an object recognition algorithm hybrid
that combines Bayesian inference with the popular
geometric hashing method [1] to our proposed multi-core
architecture. Geometric hashing is well-known in the
computer-vision and medical imaging research areas for its
low-complexity and accuracy. The addition of heuristic
Bayesian techniques similar to those described in [2],
makes the algorithm more tolerant of fuzzy objects such as
distorted images or rotational and translational variants of
the same image.

The main idea in this algorithm is to compute a hash
function of salient features of the object, which maps to a
location in an artificial “hash space” in which simple
distance metrics can be computed between the hashed
location and nearby entries containing library features to
match against. As a result, our architecture must implement
a form of approximate hashing that returns multiple entries
within a cutoff distance of the hash location, and each entry
is weighted by its distance. Models in our library whose
features receive the highest sum of weighted hits are
considered matches.

Architectural Mapping
One obvious choice for implementing geometric hashing is
the CA-RAM architecture [3] which places a hash function
logic alongside conventional memory structures. Although
this architecture can in principle be extended to perform the
approximate hybrid approach, a natural extension to CA-
RAM which incorporates approximate matching has
already been developed in the form of the Programmable
Object Evaluation Memory (POEM) architecture [4].

As shown in Figure 1, the POEM architecture matches
stored content to an input feature vector (operand) through
the user-definable distance function "F". Our first
implementation of POEM on a Xilinx Virtex-2 has 4 dual-
port banks of memory, each 256 bits wide by 512 words

This work was sponsored by DARPA/IPTO in the Architectures for
Cognitive Information Processing (ACIP) program;

Contract number FA8750-04-C-0266

deep. Each 256-bit row of memory represents 8 integers of
stored feature content. The four banks of memory are
compared to new input feature vectors in parallel, according
to the specified function, and the results are fed into a
1pipelined minimization tree. The data object associated
with the best-responding row is returned.

The Traveling Salesman Problem (TSP) was chosen to test
the recall ability and accuracy of such a memory. In
learning mode, candidate problems are solved optimally,
and the problem/solution pairs are stored. A replacement
policy which favors replacing least frequently used content
with new inadequately represented content effectively
flattens the response error.

Figure 1: POEM Architecture.

In this application, “F” implements the hash distance, and
the subsequent POEM logic performs the weight
summations.

To effectively scale a multi-core POEM architecture to the
geometric inference problem, our goal is to ensure that the
match logic does not idle due to data starvation. This
unwanted behavior often occurs in a multi-core architecture
with a monolithic memory structure in which the bottleneck
quickly becomes the communication between memory and
the cores (see Figure 2). One way to address this issue is to
split the memory into chunks, where each chunk is
dedicated to a particular core. Since each core and memory
chunk is independent in this scheme, it is important to have
a systematic way of assigning each core to a separate piece
of the problem.

The way in which this is done as well as the effectiveness
of the approach varies with the problem. In the case of
Bayesian inference for object recognition, the problem can
be partitioned based on feature location within the image.
In our approach, we recursively divide up the relevant
features of images in the library into quadrants as shown in
Figure 3. As illustrated, the smallest regions are addressed
via row and column bits, where each bit represents
recursion into a smaller set of quadrants. Each of the
smallest regions are assigned to a core and memory chunk.
When matching occurs, features from the image under
analysis are dispatched to the appropriate core and memory
chunk based on the location of the feature. This

dispatching process is extremely efficient and requires very
little logic since it is based on nothing more than a grid
discretization of the image.

A key parameter that must be adjusted to optimize
performance in our approach is the memory chunk size.
This parameter depends not only on the location density of
image features, but also on the available number of cores
and the desired granularity. In other words, more cores can
be used to either match against larger image regions in
larger images (potentially requiring larger memory chunks)
or to match against smaller regions in smaller images (an
increase in the granularity which potentially requires
smaller memory chunks). We explore this critical tradeoff
via simulation in the ISIS framework [5].

Figure 2: A multi-core architecture with a monolithic

main memory.

ISIS contains a set of C++ classes that describe the
functionality of various components of a parallel computer,
such as processors, memories, buses, and routers. These
components can be assembled into a simulator and are
easily extended to support new features. ISIS supports MPI
as well as cache coherence protocols for communication
between processor elements. With ISIS we compare a
monolithic memory multi-core architecture to our proposed
architecture on various object recognition benchmarks and
provide a variety of statistics including cycle counts,
memory access patterns, and communication latency. The
results indicate that our proposed architecture scales much
better as the number of cores is increased.

Figure 3: The proposed architecture for Bayesian inference
object recognition. The image is partitioned recursively into
quadrants, and each region (addressable by row and column

bits) is assigned to a core and memory chunk.

This work was sponsored by DARPA/IPTO in the Architectures for
Cognitive Information Processing (ACIP) program;

Contract number FA8750-04-C-0266

References
[1] H. J. Wolfson and I. Rigoutsos, “Geometric Hashing: An

Overview,” IEEE Computational Science and Engineering,
Vol 4, No. 4, pp. 10-21, 1997.

[2] I. Rigoutsos and R. Hummel, “A Bayesian Approach to
Model Matching with Geometric Hashing,” Computer Vision
and Image Understanding, Vol. 62, No. 1, pp. 11-26, 1995.

[3] S. Cho, J. R. Martin, R. Xu, M. H. Hammoud, and R.
Melhem, “CA-RAM: A High-Performance Memory
Substrate for Search-Intensive Applications,” In Proc. of the
IEEE Intl. Symposium on Performance Analysis of Systems
and Software (ISPASS 2007), pp. 230-241, 2007.

[4] J. C. Russo, M. Amduka, K. Pederson, R. Lethin, J. Springer,
R. Manohar, and R. Melhem, “Enabling Cognitive
Architectures for UAV Mission Planning,” In Proc. of the
Tenth Annual High Performance Embedded Computing
Workshop (HPEC 2006), 2006.

[5] T. Horita and M. Wakabayashi, “Environment for
Multiprocessor Simulator Development,” In Proc. of the Intl.
Symposium on Parallel Architectures, Algorithms and
Networks (ISPAN 2000), p. 64, 2000.

