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ABSTRACT 

 
A fuzzy logic resource manager that enables a collection of unmanned aerial vehicles (UAVs) to automatically cooperate 
to make meteorological measurements will be discussed.  Once in flight no human intervention is required.  Planning 
and real-time control algorithms determine the optimal trajectory and points each UAV will sample, while taking into 
account the UAVs’ risk, risk tolerance, reliability, mission priority, fuel limitations, mission cost, and related 
uncertainties.  The control algorithm permits newly obtained information about weather and other events to be 
introduced to allow the UAVs to be more effective.  The approach is illustrated by a discussion of the fuzzy decision tree 
for UAV path assignment and related simulation.  The different fuzzy membership functions on the tree are described in 
mathematical detail.  The different methods by which this tree is obtained are summarized including a method based on 
using a genetic program as a data mining function.  A second fuzzy decision tree that allows the UAVs to automatically 
collaborate without human intervention is discussed.  This tree permits three different types of collaborative behavior 
between the UAVs.  Simulations illustrating how the tree allows the different types of collaboration to be automated are 
provided.  Simulations also show the ability of the control algorithm to allow UAVs to effectively cooperate to increase 
the UAV team’s likelihood of success. 
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1. INTRODUCTION 
 
Knowledge of meteorological properties is fundamental to many decision processes.  Due to personnel limitations and 
risks, it is useful if related measurement processes can be conducted in a fully automated fashion.  Recently developed 
fuzzy logic planning and control algorithms that allow a collection of unmanned aerial vehicles (UAVs) and an 
interferometer platform (IP) to automatically collaborate will be discussed1, 2.  In particular, the fuzzy decision trees1-6 

(FDTs) that “assigns UAVs to paths” (AUP) and the FDT for “priority for helping” (PH) are discussed.  The AUP FDT 
is used by both the planning and control algorithms.  The PH FDT is used by the real-time control algorithm to allow 
automatic cooperation between the UAVs through communications. 
 
The fuzzy logic based planning and control algorithms that have been developed allow a collection of UAVs making up 
the UAV team to engage in cooperative sampling of the atmosphere in real-time without human intervention.  Each 
algorithm determines the best flight paths by minimizing a cost function1, 2.  Once flight paths are determined the AUP 
FDT and a defuzzification algorithm explained below are used for UAV flight path assignments.   
 
The AUP FDT incorporates fuzzy concepts related to UAV sensor reliability, UAV non-sensor reliability, the UAV’s 
value, the UAV custodian’s risk-tolerance, and the UAV’s speed.  The AUP FDT also incorporates fuzzy concepts 
related to the path the UAV might fly including: mission risk and mission priority.   
 
Each UAV has onboard its own fuzzy logic based real-time control algorithm that uses the PH FDT.  The control 
algorithm renders each UAV fully autonomous; no human intervention is necessary.  The control algorithm aboard each 
UAV will allow it to determine its own course, change course to avoid danger, sample phenomena of interest that were 
not preplanned, and cooperate with other UAVs.  The PH FDT incorporates the fuzzy concepts related to UAV 
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properties used by the AUP FDT as well as path concepts somewhat different than those previously used.  There will be 
two different types of cooperation allowed by the PH FDT and three classes of help requests.   
 
The first type of cooperation that the UAVs may exhibit is to support each other if there is evidence that an interesting 
physical phenomenon has been discovered.  If one UAV seems to have discovered a radio hole, it can request that 
another UAV or UAVs help determine the extent of the radio hole so the IP can fly around it.  Similar cooperation can 
be carried out if a UAV may have discovered other elevated extended weather systems.  
 
The second type of cooperation that the UAVs can exhibit through their control algorithm is when a UAV is 
malfunctioning or may be malfunctioning.  If a UAV’s internal diagnostics indicate a possible malfunction, then it will 
send out an omni-directional request to the other UAVs for help.  Each UAV will calculate its priority for providing help 
using a fuzzy logic procedure described below.  The UAVs send their priority for providing help message back to the 
requesting UAV.  The requester subsequently sends out a message informing the group of the ID of the highest priority 
UAV.  The high priority UAV then proceeds to aid the requester. 
 
The support provided by the helping UAV can take on different forms.  If the requester suspects a malfunction in its 
sensors, the helper may measure some of the same points originally measured by the UAV in doubt.  This will help 
establish the condition of the requester’s sensors.  If additional sampling indicates the requester is malfunctioning, and 
represents a liability to the group it will return to base.  In this case the supporter may take over the mission of the 
requester.  Whether or not the supporter samples all the remaining sample points of the requester; subsequently, 
abandoning its original points depends on the sample points’ priorities.  A fuzzy logic based procedure for determining 
sample point priorities is discussed below.  If it is established that the requester is not malfunctioning or the requester 
can still contribute to the mission’s success it may remain in the field to complete its current mission. 
 
Section 2 develops a fuzzy logic based approach for assigning UAVs to paths.  Section 3 emphasizes real-time UAV 
control and the fuzzy decision tree (FDT) that allows UAVs to automatically cooperate.  Section 4 provides results of 
computational experiments.  Finally, section 5 gives a summary.  
 

2. AUP FUZZY DECISION TREE 
 
The planning algorithm1, 2 determines the path each UAV will pursue, which points will be sampled, the minimum 
number of UAVs required for sampling the points and makes assignments of UAVs for measurements at particular 
points.  UAVs are assigned as a function of their abilities to sample high priority points first.  The planning algorithm 
determines flight paths by assigning as many high priority points to a path as possible taking into account relative 
distances including sampling and non-sampling velocity, risk from taboo points, and UAV fuel limitations.  Once flight 
paths are determined it assigns UAVs to paths (AUP) using the AUP FDT which is developed below. 
 
Points in the measurement space are considered taboo if they are threatening to the UAVs, e.g., because of local 
turbulence or the presence of physical obstructions such as mountain tops.  Position vectors measured from the origin for 
the taboo points are denoted as tabooi n,,2,1i,t K

r
= where taboon is the number of taboo points. 

 
Each UAV will fly from lattice point to lattice point, i.e., grid point to grid point, let one such route be given by the 
matrix of points, 
 

[ ]121 ,,,, PPPPPath pathn
rr

K
rr

=  (1) 

 
where the ordering of points gives the direction of the route, i.e., starting at 1P

r
 and ending at 1P

r
.  Let the degree of 

undesirability of the neighborhood associated with taboo points, tabooi n,,2,1i,t K
r
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points pathj n,,2,1j,P K
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= .  The definition of the mission risk (MR) is 
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The degree to which the kth path belongs to the related fuzzy concept MR is given by 
 

( ) ( )
( ){ }jj

k
kMR PathTabooriskmission

PathTabooriskmissionPathTaboo
,_max

,_, ≡µ  
(3) 

 
A fuzzy concept related to “mission risk” is “low risk.”  The fuzzy membership function for “low risk” denoted as LRµ  
is defined as  
 

( ) ( )MRkLR 1,1minPath,Taboo µαµ −+≡  (4) 
 
where ( )1,0∈α  is an expert defined parameter.  The function of α is to make sure that “low risk” does not dominate the 
calculations developed below. 
 
Within the path specified by (1), let there be the following sample points to be measured, spj n,,2,1j,S K

r
= .  Let the 

function prio assign priorities to the sample points, i.e, ( )jSprio
r

 is the priority of the jth sample point.  The values that 

( )jSprio
r

 can take are positive integers with one representing the highest priority, two the next highest priority, etc.  The 

mission priority (MP) for the kth kPath is defined to be 
 

( )
( )∑≡

=

spn

1i
i

k
Sprio

1Pathprio_mission r . 
 
(5) 

 
The degree to which the kth path belongs to the related fuzzy concept MP is given by 
 

( ) ( )
( ){ }j

j

k
kMP

Pathprio_missionmax
Pathprio_mission

Path ≡µ . 
 
(6) 

 
The fuzzy degree of reliability experts assign to the sensors of UAV(i) is denoted as ( )( )iUAVsrµ .  This is a real number 
between zero and one with one implying the sensors are very reliable and zero that they are totally unreliable.  Likewise, 

( )( )iUAVnsrµ is the fuzzy degree of reliability of other non-sensor systems onboard the UAV(i).  This fuzzy concept 
relates to any non-sensor system, e.g., propulsion, computers, hard disk, deicing systems, etc.  The value of UAV(i) in 
units of $1000.00 is denoted as ( )( )iUAVV .  The amount of fuel that UAV(i) has at time t is denoted ( )( )t,iUAVfuel .  
All the UAVs participating in a mission are assumed to leave base at time, ott = . 
 
Let UAV(i)’s fuzzy grade of membership in the fuzzy concept “risk tolerance” be denoted as ( )( )iUAVtolrisk−µ .  The 
quantity, ( )( )iUAVtolrisk−µ , is a number between zero and one and will be simply referred to as UAV(i)’s risk tolerance.  
If the risk tolerance is near zero then the UAV should not be sent on very risky missions.  If the UAV’s risk tolerance is 
near one then it can be sent on very risky missions.  It seems natural to compare “risk tolerance” to “Value.”  So the 
comparison can be carried out on the same footing, a fuzzy concept of value should be defined. 
 
The fuzzy grade of membership of each UAV that can be assigned to the mission in the fuzzy concept “Value” is defined 
as 
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(7) 

 
The advantage of the concept of “risk tolerance” is that it gives the user an extra concept to exploit.  If the UAV is not of 
great relative value, but it still might be needed for a crucial mission after the current one, it might be useful to give it a 
low risk tolerance so that it is not lost on the current mission.  This may allow it to be used on the following mission. 
 
Another fuzzy concept and related fuzzy membership function that will be defined is “fast.”  A UAV is said to be fast if 
it takes a short time to travel a particular path.  Let the ( )( )Path,iUAVT  be the amount of time it will take UAV(i) to fly 
and make measurements along Path .  The fuzzy membership function for the concept “fast” is defined as follows: 
 

( )( ) ( )( )
( )( ){ }⎟⎟

⎟
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⎜
⎜
⎜
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⎛
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,1,1min, αµ  

 
 
(8) 

 
and  
 

( )[ ( )[ ] ]relMPMPtolriskrelnsrsrrrtmp ,3,2,1 ,1max,1min,min εεµµεµµχ −−−⋅−≡Λ −  (9) 

 
where ( ]1,0,, rel,3MP,2rel,1 ∈εεε  are expert assigned parameters.  The Heaviside step function denoted as χ in (9) takes 
the value one when its argument is greater than or equal to zero and is zero otherwise.   
 
The term ( )( )MP,2MPtolriskrel,1 ,1max,1min εµµε −−⋅ −  in the Heaviside step function’s argument in (9) can result in 

rrtmpΛ going to zero if tolrisk−µ  or MPµ are small enough.  If “risk tolerance” and “mission priority” take low values then 

depending on the value of rel,1ε , the membership function for the fuzzy concept “fast” may take the value zero.  The 
parameter MP,2ε  limits the effect of “mission priority.”  Even if the mission priority is very high, risk tolerance plays an 
important role.  If the UAV has high risk tolerance and the path, high mission priority the UAV must have a minimum 
reliability given by rel,3ε .  Finally, the motivation for the concept “fast” is that a fast UAV experiences a lower relative 
risk since it is in the field less time and may be exposed to risk for a shorter duration. 
 
A fuzzy concept that combines “Value” and “mission risk” is “VMR” and its membership function denoted as VMRµ is 
defined as  
 

( ) ( )( )LRfast2VtolriskVMR ,AND,1,minmin µµµµµ −≡ −  
 

(10) 
 
The use of 2AND in (10) allows distinctions to be made between various values of fastµ  and LRµ .  If 2AND  were 

replaced by a min  in (10) then if fastµ is low enough then ( )LRfast ,min µµ  would take the value fastµ independent of the 

value of LRµ  this would not allow fine distinctions to be made. 
 
The logical connective 2AND  is defined as 
 

( ) BABA2 ,AND µµµµ ⋅≡  (11) 
 
The fuzzy concept “RMP” combines the fuzzy concepts “sr,” “nsr,” and “MP.”  The fuzzy membership function for 
“RMP,” denoted as RMPµ is defined as 
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( )MPnsrsrRMP ,,min µµµµ ≡  (12) 
 
Both the membership functions for “VMR” and “RMP” can be represented as fuzzy decision trees. 
 
Finally, the fuzzy membership function for the fuzzy concept “assignment of UAV(i) to the path” (AUP) is defined as 
 

( )[ ] VMRRMPVMRRMPRMPAUP ANDAND µµµµµµ ⋅=≡ 2
22 ,,  

 

(13) 
 
The fuzzy membership function for AUP is a decision tree that combines both “VMR” and “RMP” as subtrees.  The use 
of 2AND  in (13) in two places renders AUPµ more sensitive to the values of RMPµ and VMRµ than it would be if the 
membership function for AUP took the value ( )VMRRMP ,min µµ .  If AUPµ were to take the value ( )VMRRMP ,min µµ  then 
a small value of RMPµ  such that VMRRMP µµ < would cause AUPµ to take the value of RMPµ independent of the value of 

VMRµ .  The use of 2AND  instead of min  allows finer distinctions to be made.  The second degree dependence of 

RMPµ in (13) results in a small value of AUPµ if RMPµ is small, but AUPµ  is still dependent on VMRµ .  This is consistent 
with expertise.  If the sensor or non-sensor reliabilities or mission priority are small, AUPµ  should be small.  Low 
reliability or priority results in a faster decline in AUPµ than high mission risk, high UAV value, low UAV risk tolerance 
or the fact that a reliable and risk-tolerant UAV is slow. 
 
The fuzzy concept AUP is depicted as a tree in Figure 1.  For both FDTs described in this paper the following 
conventions are observed.  Leaves of the tree, i.e., those vertices of degree one are labeled by the names of the fuzzy 
concepts described above.  Vertices are labeled by the specific logical connective used, i.e., min  or 2AND .  A circle on 
an edge indicates the fuzzy logic modifier not.  The fuzzy modifier not is defined as the complement of the fuzzy set, 
i.e., let Aµ  be the fuzzy membership function for the fuzzy concept A then membership function for not A is given by 

A1 µ− .  A diamond on an edge refers to a function related to not which has a lower bound of α which is generally not 
zero.  The mathematical form of this modifier is [ ]Aµα −+1,1min .  The quantity α is an expert defined quantity.  This is 
a bounded sum7, 8 between the complement of A and the crisp number α .  An ellipse label as “Powq” indicates that the 
value of the input fuzzy grade of membership is raised to the power “q”.  The value “q” is taken as two for this paper. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Given the fuzzy grade of membership, it is necessary to defuzzify, i.e., make definite UAV-path assignments.  Simply 
assigning the UAV with the highest fuzzy grade of membership for a particular path to that path can give less than 
desirable results.  The approach to defuzzification taken is as follows: if the number of UAVs is denoted as UAVn  and 
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Figure 1: The AUP fuzzy decision tree. 
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likewise, the number of paths is denoted by pathn , where pathUAV nn ≥ then consider the set of all possible permutations 

of the pathn UAVs selected from a total of UAVn UAVs.  For each assignment of pathn UAVs to the paths, add up the 

values of AUPµ for that assignment over the paths.  This sum is referred to as the assignment benefit (AB).  The 
assignment with the highest AB is the one selected.  Finally, a similar procedure is followed if pathUAV nn < . 
 
The decision tree for AUP given in (13) was constructed using expertise provided by human experts.  It is a significant 
improvement over a previously developed fuzzy decision rule for path assignment also constructed from expertise2.  An 
alternate method of obtaining (13) is to evolve it using a genetic program9 (GP).  A GP is a computer program based on 
the theory of evolution that evolves mathematical expressions or computer programs that can be considered optimal in a 
sense.  The GP has been used as a data mining function10 to create the decision tree in (13).  The GP data mined a 
scenario database where each scenario had been labeled by an expert.  Expert rules were also incorporated to guide the 
evolutionary process and improve convergence time.  The decision tree in (13) has been evolved many times.  The GP 
finds the same AUP decision tree, over and over again independent of the seed of the random number generator used to 
simulate a random evolutionary process. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

3. CONTROL ALGORITHM 
 
Each UAV has a real-time algorithm onboard it that allows recalculation of paths during flight due to changes in 
environmental conditions or mission priorities.  These changes typically become apparent after the planning algorithm 
has run during the pre-flight stage.  As in the case of the planning algorithm the control algorithm uses an A-star 
algorithm11 to do the best path calculation, employs fuzzy logic and solves a constrained optimization problem.  This has 
proven successful for real-time application.  Other routing algorithms may be considered for this application in the 
future12. 
 
The control algorithm allows UAVs to cooperatively help each other without human intervention.  A UAV may requests 
help if it discovers a potential elevated system like a radio hole, malfunctions or suspected malfunctions.  All of these 
conditions can result in help messages being transmitted between the UAVs.  These help messages can result in 

   Figure 2: PH fuzzy decision tree 
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interactions between the UAVs based on transmission of the results of priority calculations for rendering support to the 
requesting UAVs.   
 
Each UAV receiving this message calculates its priorities for providing assistance to the UAV in need using the priority 
for helping (PH) FDT which is developed in this section.  The fuzzy grade of membership in the concept PH is 
subsequently transmitted to the original UAV desiring support.  The requesting UAV sends out an omni-directional 
message with the ID of the UAV with highest priority for contributing support.  The high priority UAV then flies into 
the necessary neighborhood of the requesting UAV to provide help. 
 
When a UAV sends out an omni-directional request for help, those UAVs receiving the message will calculate their 
fuzzy priority for helping, denoted as “PH.”  The UAV that will ultimately help the requester is the one with the highest 
fuzzy priority for helping.  The fuzzy priority for helping takes into account a variety of properties of the potential 
helper.  The set of UAVs that receive the request for help from UAV(i) at time t is denoted as )t,i(help .  If UAV(i) 
requests help at time t and UAV(j) receives the message then UAV(j) will take into account the amount of time, 
denoted, ( )( )jUAVtime_help , it will take to fly from the point where it received the request to the point where it would 
provide support.  It also takes into account the amount of fuel UAV(j) has left at the time of the request, denoted 

( )( )t,jUAVfuel  and UAV(j)’s fuzzy concept of “mission priority” at time, t .   
 

3.1 Fuzzy decision tree for providing help  
The next fuzzy decision tree to be developed is the “priority for helping”(PH) decision tree.  This tree allows the UAVs 
to determine how they should support each in real-time as the need arises.  When a UAV requires help in making a 
measurement, its diagnostic systems indicate a sensor might be malfunctioning or there is a clear indication of a 
malfunction, a UAV can request that another UAV provide help.  The request for help is sent out as an omni-directional 
message.  When a UAV sends out an omni-directional request for support, those UAVs receiving the message will 
calculate their fuzzy priority of providing help, denoted as PHµ .  The UAV that will ultimately help the requester is the 
one with the highest value of PHµ .  The fuzzy concept, priority for helping, takes into account properties of the potential 
supporter.  The set of UAVs that receive the request for help from UAV(i) at time t is denoted as )t,i(help .  If UAV(i) 
requests help at time t and UAV(j) receives the message then UAV(j) will take into account the necessary travel time it 
will consume in helping UAV(i), as well as the relative amounts of fuel and battery life the potential helper, UAV(j), has 
at the time the request is received.  Define the relative degree of fuel and battery power left at time, t , that UAV(j) 
might use to help UAV(i) as 
 

( ) ( )( )
( )( )tkUAVfuel

tjUAVfueltji
tihelpk

fuel ,max
,,,

),(∈

=µ  
(14) 

 
and 
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( )( )tkUAVbattery

tjUAVbatterytji
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Define the relative degree of UAV(j)’s “not-separation” from UAV(i) as  
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where ( ) ( )( )ijQjUAVT req ,,  is the time it would take UAV(j) to travel the path ( )ijQreq ,  from the point ( )t,jpos
→

where 

UAV(j) receives request for help at time, t , from UAV(i) to the final point , ( ) i,inrequest
q
r

, where it would start helping 

UAV(i).  The subscript “req” on ( )ijQreq ,  is an abbreviation for “requested path.”  The quantity, ( ) 1inrequest − , is the 
number of points that UAV(j) would pass through in going from its position at time, t, to the first new sample point, 

( ) i,inrequest
q
r

. 

 
The travel time ( ) ( )( )ijQjUAVT req ,, is determined by an A-star algorithm1, 2, 11 and includes sampling and non-sampling 
velocities.   
 
The quantity, β , is added so that ( )t,j,insepµ  remains nonzero even for the UAV in the set )t,i(help  that will take the 
maximum amount of time, which leaves open the possibility of the slowest UAV participating in the coordinated team.  
The quantity, β , is an additive constant to be determined such that 
 

10 ≤< β . (17) 

Let the path from ( ) iinrequestq ,1+
r

, the first flight point beyond ( ) iinrequestq ,
r

, to baseP
r

, the position of the base that UAV(j) 

returns to after helping UAV(i) be denoted as ( )ijQsar , , where the subscript “sar” denotes “sample and return.”  The full 
path that UAV(j) will fly in support of UAV(i) is denoted as 
 

( ) ( ) ( )[ ]ijQijQijSPath sarreq ,,,, ≡  (18) 

 
where the notation SPath is an abbreviation for “support path.”  It should be recalled that ( )ijQreq ,  is a matrix of order 

( )( ) 31 ×+ inrequest where the “3” arises from representing points in three spatial dimensions.  If the path ( )ijQsar ,  has 
( )ijsarn , points then ( )ijQsar ,  is a ( ) 3, ×ijsarn matrix.  The path ( )ijSPath ,  is then represented by a 

( ) ( )( ) 3,1 ×++ ijsarnirequestn matrix.  The path ( )ijQsar ,  and subsequently ( )ijSPath , can contain non-sampling points, new 
sampling points contributed by UAV(i) and old sampling points originally assigned to UAV(j), assuming UAV(j) has 
enough fuel and battery time left to sample all these points. 
 
As an intermediate step define the quantity below 
 

( ) ( )( )
( )( ) ( )( )[ ] ( ) ( )( )( )ijSPathjUAVTtiUAVbatterytjUAVfuel

ijSPathjUAVFB

batteryfuel ,,,,,min
,,

−++
≡

εεχ
 

(19) 

 
The parameters fuelε  and batteryε  are added to make sure that UAV(j) has sufficient fuel and battery time in the face of 
travel uncertainties such as head winds which may prolong flight times.  The notation, “FB,” in the name of the function 
in (19) is an abbreviation for “fuel and battery.” 
 
Let UAV(j)’s fuzzy degree of membership in the fuzzy concept “fuel-battery-separation” (FBS) be defined as 
 

( ) ( ) ( )( ) ( ) ( )( ) ( ) ( ) ( )tjitjitjiijSPathjUAVFBijSPathiUAVjUAV batteryfuelnsepFBS ,,,,,,,,,,, µµµµ ⋅⋅⋅≡  (20) 

  
The FBS fuzzy decision tree is depicted in Figure 2. 
 
Finally, enough formalism has been developed to define the membership function for the fuzzy concept “priority for 
helping” (PH) for UAV(j) to help UAV(i).  This membership function is defined as 
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( ) ( ) ( )( )
( ) ( ) ( )( ) ( ) ( ) ( )( )[ ]ijSPathiUAVjUAVijSPathiUAVjUAV

ijSPathiUAVjUAV

AUPFBS

PH
,,,,,,,min

,,,
µµ

µ ≡
 

(21) 

 
The UAV that has the largest degree of membership in “priority for helping” is the one that will be assigned by UAV(i) 
to provide support.  The PH fuzzy decision tree is depicted in Figure 2. 

 
4. COMPUTATIONAL EXPERIMENTS 

 
This section considers computational examples related to multi-UAV assignment during the control stage for four 
measurement processes.  During the actual operation of the measurement processes different events arise resulting in the 
PH tree making various assignments. 
 
The measurement space in the planning and control stages consists of an atmospheric volume 60 miles wide, by 60 miles 
long, and 15 miles in maximum altitude measured from the ground which is assumed to be a flat plane.  There are 
initially nine points to be sampled.  The points are assumed to be surrounded by spherical neighborhoods of desirability.  
The degree of desirability of each sample point varies with distance.  The degree of desirability of different sample 
points at different ranges can vary. 
 
There are many taboo points.  These taboo points and their associated neighborhoods of undesirability give rise to 
significant degrees of mission risk for each of the paths ultimately selected by the planning and control algorithms. 
 
An idealized model of UAV behavior has been selected for these computational examples.  The UAVs are assumed to 
have operational efficiencies that vary with altitude.  At higher altitudes the engines are considered less efficient.  When 
the UAVs change altitude more fuel is consumed than when they fly in a plane parallel to the earth.  The UAV’s fuel 
consumption efficiency, when descending is assumed to be much better than when ascending. 
 
Although not depicted, there are many taboo points.  It is largely the taboo points that determine at which points 
sampling is conducted.  Given the neighborhoods of desirability around the ideal sample points, there are many points at 
which sampling can occur. 
 
The planning and control algorithms ultimately determine that given the UAV properties in terms of fuel consumption 
efficiency described above and the extent of the neighborhood of desirability around sample points, sampling should be 
conduced in three planes parallel to the ground plane.  These three planes are located at altitudes of 5 miles, 10 miles, 
and 15 miles above the ground and labeled as the “1 plane,” “2 plane,” and “3 plane,” respectively. 
 
In the five figures in this section, the following notation is used.  Each point to be sampled is labeled by an “o” and an 
ordered triple of numbers.  The ordered triple gives each sample point’s “point index,” “point priority,” and “path 
index.”  The “point index” gives the order in which the point is sampled along the path with a given “path index.”  A 
point with a “point index” of one is sampled first, followed by the sample point with “point index” of two and so on.  
The “path index” is the number of the UAV that is assigned to do the sampling.  The “point priority” gives the point’s 
priority or importance for sampling.  Points with priority one are the most important followed by priority two points and 
so on.  Finally, points will also be referred to as being at the position (x, y, z) miles where “x” refers to the horizontal 
axes, “y” the vertical axes, and “z” the altitude of the planes depicted in Figures 3-7. 
 
Figure 3 depicts the planning stage.  The planning algorithm determines that three UAVs are required for the 
measurement process.  The UAVs were deliberately selected so that fuel and battery life would not be the only 
determining factor for point measurement assignments.  The fact that the planning and control algorithms have the 
UAVs sample in planar regions at particular altitudes reflects fuel efficiency of the UAVs.  The UAVs use less fuel 
when flying parallel to the earth than when ascending.  They use less fuel flying equal distances in planes nearer the 
earth than those at higher altitudes.  The distribution of points to be sampled ultimately determined that three sample 
planes and hence three UAVs are required. 
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Plane 1 of Figure 3 has four points to be sampled.  The planning algorithm using the AUP FDT determined that three of 
the points are to be sampled by UAV(1) and one of them by UAV(2).  Given the proximity of the points to be sampled 
by UAV(2) to the base at (0, 0, 0) miles it was determined that UAV(2) should sample in plane 2 first and subsequently 
sampling its third point in plane 1 while it is descending. 
 
Plane 2 contains the first two points that UAV(2) is to sample.  Plane 3 contains all three of the points that UAV(3) is to 
sample. 
 
Figure 4 depicts the control stage for example 1.  Initially, the UAVs follow the paths determined by the planning 
algorithm.  Unfortunately, UAV(2) fails immediately after sampling the point at (10, 20, 10) miles in plane 2.  UAV(2) 
sends out an omni-directional message to the other two UAVs in the field.  They calculate their priority for helping using 
their PH FDTs.  It is determined by the PH tree that UAV(3) should sample those points missed by UAV(2).  So 
UAV(1) samples those points assigned during planning,  UAV(2) samples the first point assigned to it and fails after 
transmission and UAV(3) samples those points missed by UAV(2). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
Figure 5 illustrates the control stage for example 2.  The planning stage is the same as in example 1 except changes in 
risk evaluation during the planning stage result in the point at (10, 50, 5) miles being assigned to UAV(1) instead of 
UAV(2).  After the point in Figure 5 at (10, 20, 10) miles is sampled, a message is sent out that the points at (40, 50, 5) 
and (40, 60, 5) miles should be sampled.  The PH tree determines that UAV(2) should do the sampling of the new points.  
So UAV(2) samples its old points and then samples the points at (40, 50, 5) and (40, 60, 5) miles in that order.  The other 
UAVs sample the points that were originally assigned. 
 
Figure 6 depicts the control stage for example 3; the planning stage assignments are the same as in example 2.  Sampling 
by three UAVs is conducted as determined in the control stage.  After the point labeled (2, 1, 1) in Figure 6 is sampled, a 

Figure 4: The control stage for example 1.   
 

Figure 3: Sampling by three UAVs as determined in the planning stage.   
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general request is sent out for the neighborhood of two sampled points to be re-sampled.  The new points to be sampled 
are at (10, 15, 5) miles and (20, 25, 5) miles.  The PH tree determines that UAV(2) should sample the two new points.  
UAV(1) is the UAV that made measurements in those neighborhoods the first time.  So UAV(2) completes its originally 
assigned points and then flies back to sample the new points.  The other two UAVs sample only those points originally 
assigned to them. 
 
Figure 7 represents the control stage for example 4, an extension of example 3.  The first phase of this example is the 
same as example 3.  Once again, UAV(2) samples the new points at (10, 15, 5) and (20, 25, 5) miles.  After the point in 
Figure 7 at (10, 15, 5) miles is sampled, a request is made to make a measurement at a new point at (20, 25, 10) miles.  
UAV(2) is selected by the PH FDT calculations to sample the new point because of the lateness of the request.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Figure 6: The control stage for example 3 
 

Figure 7: This is the control stage for example 4 an extension of example 3. 
 
 

Figure 5: The control stage for example 2. 
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5. SUMMARY 
 
Fuzzy logic based planning and control algorithms that allow a team of cooperating unmanned air vehicles (UAVs) to 
make meteorological measurements have been developed.  Two fuzzy decision trees (FDTs) fundamental to the planning 
and control algorithms are provided in detail.  The first of these assigns a UAV to a path (AUP).  A related 
defuzzification algorithm is provided.  The AUP FDT incorporates fuzzy concepts related to UAV sensor reliability, 
UAV non-sensor reliability, the UAV’s value, the UAV custodian’s risk-tolerance, and the UAVs speed.  The AUP FDT 
also incorporates fuzzy concepts related to the path the UAV might fly including: mission risk and mission priority.   
 
The FDT that is used for multi-UAV cooperation is developed.  When a UAV requests help each UAV receiving the 
requests will calculate its priority for helping (PH) the requester using the PH FDT.  This tree can be used by the UAV 
for three different types of automatic cooperation.  The PH FDT permits the UAVs to collaborate without human 
intervention.  The PH FDT incorporates the fuzzy concepts related to UAV properties used by the AUP FDT as well as 
path concepts somewhat different than those previously used.  Experimental results are examined.   
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