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Abstract. A data mining procedure for automatic determination of fuzzy deci-
sion tree structure using a genetic program is discussed.  A genetic program 
(GP) is an algorithm that evolves other algorithms or mathematical expressions.  
Methods for accelerating convergence of the data mining procedure are exam-
ined.  The methods include introducing fuzzy rules into the GP and a new inno-
vation based on computer algebra.  Experimental results related to using com-
puter algebra are given.  Comparisons between trees created using a genetic 
program and those constructed solely by interviewing experts are made.  Con-
nections to past GP based data mining procedures for evolving fuzzy decision 
trees are established.  Finally, experimental methods that have been used to 
validate the data mining algorithm are discussed. 
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Planning Algorithms. 

1   Introduction 

Two fuzzy logic based resource managers (RMs) have been developed that automati-
cally allocate resources in real-time [1-3].  Both RMs were evolved by genetic pro-
grams (GPs).  The GPs were used as data mining functions.  Both RMs have been 
subjected to a significant number of verification experiments. 

The most recently developed RM is the main subject of this paper.  This RM auto-
matically allocates unmanned aerial vehicles (UAVs) that will ultimately measure 
atmospheric properties in a cooperative fashion without human intervention [2,3].  
This RM will be referred to as the UAVRM.  It consists of a pre-mission planning 
algorithm and a real-time control algorithm that runs on each UAV during the mission 
allowing the UAVs to automatically cooperate. 

The previous RM was evolved to control electronic attack functions distributed 
over many platforms [1].  It will be referred to as the electronic attack RM (EARM). 

This paper introduces many novel features not found in the literature.  These in-
clude several new approaches for improving the convergence of the genetic program 
that evolves control and planning logic.  Such procedures involve the use of symbolic 
algebra techniques not previously explored, a terminal set that includes both fuzzy 
concepts and their complements, the use of fuzzy rules, etc.  The control algorithm 
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evolved by a GP is compared to one created through expertise.  Experiments to vali-
date the evolved algorithm are discussed. 

Section 2 gives a brief discussion of fuzzy decision trees (FDTs), how FDTs are 
used in the UAVRM, genetic programs and GP based data mining (DM).  Section 3 
describes the UAVRM’s FDT that assign UAVs to paths.  Section 4 examines how a 
fuzzy decision tree for the UAVRM was created through GP based data mining.  Sec-
tion 5 discusses experiments that have been conducted to validate the FDT that as-
signs UAVs to paths (AUP).  Finally, section 6 provides a summary. 

2   Fuzzy Decision Trees and Genetic Program Based Data Mining 

The particular approach to fuzzy logic used by the UAVRM is the fuzzy decision tree 
[1-5].  The fuzzy decision tree is an extension of the classical artificial intelligence 
concept of decision trees.  The nodes of the tree of degree one, the leaf nodes are la-
beled with what are referred to as root concepts.  Nodes of degree greater than unity 
are labeled with composite concepts, i.e., concepts constructed from the root concepts 
[6,7] using logical connectives and modifiers.  Each root concept has a fuzzy mem-
bership function assigned to it.  Each root concept membership function has parame-
ters to be determined.  For the UAVRM, the parameters were set based on expertise. 

The UAVRM consists of three fuzzy decision trees.  Only the creation of the FDT 
by GP based data mining for assigning UAVs to paths will be considered in this paper. 
This FDT is referred to as the AUP tree; and the associated fuzzy concept, as AUP. 
The AUP tree makes use of the risk tree which is discussed in the literature [2, 3].  

Data mining is the efficient extraction of valuable non-obvious information em-
bedded in a large quantity of data [8].  Data mining consists of three steps: the con-
struction of a database that represents truth; the calling of the data mining function to 
extract the valuable information, e.g., a clustering algorithm, neural net, genetic algo-
rithm, genetic program, etc; and finally determining the value of the information ex-
tracted in the second step, this generally involves visualization. 

In a previous paper a genetic algorithm (GA) was used as a data mining function to 
determine parameters for fuzzy membership functions [7].  Here, a different data min-
ing function, a genetic program [9] is used.  A genetic program is a problem inde-
pendent method for automatically evolving computer programs or mathematical  
expressions. 

The GP data mines fuzzy decision tree structure, i.e., how vertices and edges are 
connected and labeled in a fuzzy decision tree.  The GP mines the information from a 
database consisting of scenarios.   

3   UAV Path Assignment Algorithm, the AUP Tree 

Knowledge of meteorological properties is fundamental to many decision processes.  
The UAVRM enables a team of UAVs to cooperate and support each other as they 
measure atmospheric meteorological properties in real-time.  Each UAV has onboard 
its own fuzzy logic based real-time control algorithm.  The control algorithm renders 
each UAV fully autonomous; no human intervention is necessary.  The control algo-
rithm aboard each UAV will allow it to determine its own course, change course to 
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avoid danger, sample phenomena of interest that were not preplanned, and cooperate 
with other UAVs. 

The UAVRM determines the minimum number of UAVs required for the sampling 
mission.  It also determines which points are to be sampled and which UAVs will do 
the sampling.  To do this, both in the planning and control stages it must solve an op-
timization problem to determine the various paths that must be flown.  Once these 
paths are determined the UAVRM uses the AUP fuzzy decision tree to assign UAVs 
to the paths. 

The AUP fuzzy decision tree is displayed in Figure 1.  The various fuzzy root con-
cepts make up the leaves of the tree, i.e., those vertices of degree one.  The vertices of 
degree higher than one are composite concepts. 

Starting from the bottom left of Figure 1 and moving to the right, the fuzzy con-
cepts “risk-tol,” “value”, “fast,” and “low risk,” are encountered.  These concepts are 
developed in greater mathematical detail in the literature [2,3].  The fuzzy concept 
“risk-tol” refers to an individual UAV’s risk tolerance.  This is a number assigned by 
an expert indicating the degree of risk the UAV may tolerate.  A low value near zero 
implies little risk tolerance, whereas, a high value near one implies the UAV can be 
subjected to significant risk.   

The concept “value” is a number between zero and one indicating the relative 
value of a UAV as measured against the other UAVs flying the mission.  The concept 
“value” changes from mission to mission depending on which UAVs are flying.   
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Fig. 1. The AUP subtree for the UAVRM 

The concept “fast” relates to how fast the UAV is and builds in measures of the 
UAV’s reliability estimates as well as its risk tolerance and the mission’s priority. 

The rightmost concept is “low risk.”  It quantifies experts’ opinions about how 
risky the mission is. It takes a value of one for low risk missions and a value near zero 
for high risk missions. 

These four fuzzy root concepts are combined through logical connectives to give 
the composite concept “VMR.” Although four concepts are now used to construct 



1340 J.F. Smith III and T.H. Nguyen 

VMR it originally only used the concepts related to value and mission risk, and was 
called the Value-Mission-Risk (VMR) subtree.   

Each vertex of the “VMR” tree uses a form of “AND” as a logical connective.  In 
fuzzy logic, logical connectives can have more than one mathematical form.  Based 
on expertise it was useful to allow two types of ANDs to be used.  The two mathe-
matical forms of AND used are the “min” operator and the algebraic product denoted 
in Figure 1 as “AND2.”  When a “min” appears on a vertex then the resulting com-
posite concept arises from taking the minimum between the two root concepts con-
nected by the “min.”  When an “AND2” appears it means that the resulting composite 
concept is the product of the fuzzy membership functions for the two concepts con-
nected by the AND2. 

The final subtree of AUP that needs to be described is the reliability-mission prior-
ity (RMP) subtree.  The RMP tree appears twice on the AUP tree.  RMP consists of a 
“min” operation between three fuzzy concepts.  These concepts are “sr” which refers 
to an expert’s estimate of the sensor reliability, “nsr” which refers to an expert’s esti-
mate of the non-sensor system reliability and “MP” a fuzzy concept expressing the 
mission’s priority. 

The AUP tree is observed to consist of the VMR subtree and two copies of the 
RMP subtree with AND2 logical connectives at each vertex.  These fuzzy concepts 
and their related fuzzy membership functions, as well as additional details are given in 
much greater detail in [2, 3]. 

 The AUP tree given in Figure 1 was originally created using human expertise 
alone.  The rediscovery of this tree using GP based data mining is described in the 
next section.  

4   GP Creation of the AUP Tree 

The terminal set, function set, and fitness functions necessary for the GP to be used as 
a data mining function to automatically create the AUP tree are described below.  The 
terminal set used to evolve the AUP tree consisted of the root concepts from the AUP 
tree and their complements.  The terminal set, T, is given by 

T={risk-tol, value, fast, low-risk, sr, nsr, MP, not-risk-tol, not-valuable,   
                           not-fast, not-low-risk, not-sr, not-nsr, not-MP}. (1) 

Let the corresponding fuzzy membership functions be denoted as 

{
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,,,,

,,,,,,
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−−−−

−−

μμμμ

μμμμ

μμμμμμ

…

…

 (2) 

When mathematical expressions are constructed by a GP that reproduce the entries 
in a database within some tolerance, the process is referred to as symbolic regression 
[10].  It is found in symbolic regression that candidate solutions are frequently not in 
algebraic simplest form and this is the major source of their excess length.  When 
candidate solutions are too long this is referred to as bloat [10]. 
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By including in the terminal set a terminal and its complement, e.g., “risk-tol,” and 
“not-risk-tol”; “value” and “not-valuable”; etc., it is found that bloat is less and con-
vergence of the GP is accelerated.  This is a recent innovation which was not used 
when the EARM was evolved using GP based data mining (DM) [1].  Additional 
bloat control procedures are described below. 

The mathematical form of the complement whether it appears in the terminal set or 
is prefixed with a “NOT” logical modifier from the function set is one minus the 
membership function.  To make this more explicit 

( ) AAnotANOT μμμ −== − 1 , (3) 

where NOT(A) refers to the application of the logical modifier NOT from the function 
set to the fuzzy concept A from the terminal set.  The notation, not-A refers to the ter-
minal which is the complement of the terminal A. 

The function set, denoted as F, consists of 

F={AND1, OR1, AND2, OR2, NOT}, (4) 

where the elements of (4) are defined in (5-9).  Let A and B represent fuzzy member-
ship functions then elements of the function set are defined as 

( ) ( )B,AminB,A1AND = ; (5) 

( ) ( )B,AmaxB,A1OR = ; (6) 

( ) BAB,A2AND ⋅= ; (7) 

( ) BABAB,A2OR ⋅−+= ; (8) 

and 
( ) A1ANOT −= . (9) 

The database to be data mined is a scenario database kindred to the scenario data-
base used for evolving the EARM [1].  In this instance scenarios are characterized by 
values of the fuzzy membership functions for the elements of the terminal set plus a 
number from zero to one indicating the experts’ opinion about the value of the fuzzy 
membership function for AUP for that scenario. 

GPs require a fitness function [9].  As its name implies the fitness function meas-
ures the merit or fitness of each candidate solution represented as a chromosome.  The 
fitness used for data mining is referred to as the input-output fitness. 

The input-output fitness for mining the scenario database takes the form 

 

 

 

(10) 

where ej is the jth element of the database; ndb  is the number of elements in the data-
base; μgp(ej) is the output of the fuzzy decision tree created by the GP for the ith  
element of the population for database element ej; and μexpert(ej) is an expert’s estimate 
as to what the fuzzy decision tree should yield as output for database element ej. 
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The AUP tree is evolved in three steps.  The first step involves evolving the VMR 
subtree; the second step, the RMP subtree and the final step, the full AUP tree.  In the 
second and third steps, i.e., evolving the RMP subtree and full AUP tree from the 
RMP and VMR subtrees, only the input-output (IO) fitness in (10) is calculated, i.e., 
the rule-fitness described below is not used. 

When evolving the VMR subtree a rule-fitness is calculated for each candidate so-
lution.  Only when the candidate’s rule fitness is sufficiently high is its input-output 
fitness calculated.  The use of the rule-fitness helps guide the GP toward a solution 
that will be consistent with expert rules.  Also the use of the rule fitness reduces the 
number of times the IO fitness is calculated reducing the run time of the GP.  After 
some preliminary definitions of crisp and fuzzy relations, a set of crisp and fuzzy 
rules that were used to help accelerate the GP’s creation of the VMR subtree are 
given.  The rules are combined to formulate the rule fitness.  The mathematical form 
of the rule fitness has not been included due to space limitations. 

Let T be a fuzzy decision tree that represents a version of the VMR subtree, that is 
to be evolved by a genetic program.  Let A and B be fuzzy concepts.  Then let 

( ) 1B,A,Tshare =γ if A and B share a logical connective denoted as C  and 

( ) 0B,A,Tshare =γ , otherwise. 

Furthermore, define the fuzzy relation 

( )
⎪⎩

⎪
⎨
⎧

=
=

=
otherwise

ORorORCif

ANDorANDCif
CBATcom

,0
211.0

214.0
,,,μ . (11) 

The following is a subset of the rules used to accelerate the GP’s convergence and 
to help produce a result consistent with human expertise. 

R1. “not-valuable” and “risk-tol” must share a logical connective, denoted as 1C , i.e., 

it is desired that ( ) 1tolrisk,valuablenot,Tshare =−−γ  

R2. “not-valuable” and “risk-tol” strongly influence each other, so they should be 
connected by AND1 or AND2.  So it is desired that 

( ) 4.,,, 1 =−− CtolriskvaluablenotTcomμ  

R3. “fast” and “low-risk” have an affinity for each other.  They should share a logical 
connective, denoted as 2C , i.e., it is desired that ( ) 1risklow,fast,Tshare =−γ  

R4. The fuzzy root concepts “fast” and “low-risk” strongly influence each other, so 
they should be connected by AND1 or AND2.  So it is desired that  

( ) 4.,,, 2 =− CrisklowfastTcomμ . 

R5. There is an affinity between the fuzzy root concepts ( )tolrisk,valuablenotC1 −−  

and ( )risklow,fastC2 − , they are connected by a logical connective denoted as 3C , 

i.e., it is desired that,   

( ) ( )( ) 1risklow,fastC,tolrisk,valuablenotC,T 21share =−−−γ . (12) 
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When the EARM was evolved by GP based data mining [1] bloat was controlled 
using adhoc procedures based on tree depth and parsimony pressure.  Most of the 
bloat in evolving mathematical expressions with a GP arises from the expressions not 
being in algebraic simplest form [10].  With that observation in mind, computer alge-
bra routines have been introduced that allow the GP to simplify expressions.  The 
following is a partial list of algebraic simplification techniques used during the evolu-
tion of the EARM and the AUP tree.  The simplification routines used when evolving 
AUP are more sophisticated than those applied to the creation of EARM [1]. 

One routine simplifies expressions of the form NOT(NOT(A)) = A.  This can be 
more complicated than it initially appears, since the NOT logical modifiers can be 
separated on the fuzzy decision tree. 

Another simplification procedure consists of eliminating redundant terminals con-
nected by an AND1 logical connective.  An example of this is AND1(A,A) =A.  Like 
the case with the logical modifier NOT there can be a separation between the AND1s 
and the terminals that add complexity to the simplification operation. 

The third algebraic simplification example is like the second.  It involves simplify-
ing terminals connected by OR1s.  Like AND1, separation between terminals and 
OR1 can increase the complexity of the operation. 

Other types of algebraic simplification use DeMorgan’s theorems in combination 
with the above procedures.  This can significantly reduce the length of an expression. 

Another algebraic procedure that reduces the length of expressions includes re-

placement of forms like AND2(A,A) by the square of “A,” i.e., 2A .  Still another 
length reducing simplification includes replacing NOT(A) with not-A, its complement 
from the terminal set listed in (1). 
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Fig. 2. Trajectory of two UAVs as determined by the planning algorithm and their paths as-
signed by AUP 



1344 J.F. Smith III and T.H. Nguyen 

There is always a question of how much algebraic simplification should be con-
ducted from generation to generation as such the simplification algorithm allows lev-
els of simplification.  If a low level of simplification is selected then some parts of an 
expression remain that might be eliminated during full simplification.  This has two 
advantages: it leaves chromosome subcomponents that may prove useful during muta-
tion or crossover and it takes less CPU time. 

Algebraic simplification produces candidate solutions in simpler form making it 
easier for human observers to understand what is being evolved.  Having candidate 
solutions that are easier to understand can be an important feature for improving the 
evolution of GPs. 

5   Computational Experiments 

The AUP tree described above has been the subject of a large number of experiments.  
This section provides a description of an experiment that is representative of the type 
of scenarios designed to test the AUP tree.  Due to space limitations only an experi-
ment involving two UAVs is discussed. 

In Figure 2 a scenario using two UAVs illustrates how AUP properly assigns the 
UAVs to the best path.  The two paths were created by the planning algorithm so that 
the UAV could most efficiently sample the atmosphere’s electromagnetic index of 
refraction [2, 3]. 

Sample points are labeled by concentric circular regions colored in different shades 
of gray.  The lighter the shade of gray used to color a point, the lower the point’s 
grade of membership in the fuzzy concept “desirable neighborhood.” [2, 3]  The leg-
end provides numerical values for the fuzzy grade of membership in the fuzzy con-
cept “desirable neighborhoods.”  If the fuzzy degree of desirability is high then the 
index of refraction is considered to be close to the index of refraction of the sample 
point at the center of the desirable neighborhood.  This allows the UAV to make sig-
nificant measurements while avoiding undesirable neighborhoods. 

Each sample point is labeled with an ordered pair.  The first member of the ordered 
pair provides the index of the sample point.  The second member of the ordered pair 
provides the point’s priority.  For example, if there are spn sample points and the 

thq sample point is of priority p , then that point will be labeled with the ordered  

pair (q,p). 
Points surrounded by star-shaped neighborhoods varying from dark grey to white 

in color are taboo points.  As with the sample points, neighborhoods with darker 
shades of gray have a higher grade of membership in the fuzzy concept “undesirable 
neighborhood.”  The legend provides numerical values for the fuzzy grade of mem-
bership in the fuzzy concept “undesirable neighborhood.”  UAVs with high risk toler-
ance may fly through darker grey regions than those with low risk tolerance. 

UAVs start their mission at the UAV base which is labeled with a diamond-shaped 
marker.  They fly in the direction of the arrows labeling the various curves in Figure 2. 

Figure 2 depicts the sampling path determined by the planning algorithm for an ex-
periment involving two UAVs.  The first, UAV(1) follows the dashed curve; the sec-
ond, UAV(2), the solid curve.  The UAVs were assigned to the different paths by the 
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AUP fuzzy decision tree described in section 2.  UAV(1) is assigned to sample all the 
highest priority points, i.e., the priority one points.  UAV(2) samples the lower prior-
ity points, i.e.; those with priority two.  Due to the greedy nature of the point-path 
assignment algorithm, the highest priority points are assigned for sampling first. 

6   Summary 

A genetic program (GP) has been used as a data mining (DM) function to automati-
cally create decision logic for two different resource managers (RMs).  The most re-
cent of the RMs, referred to as the UAVRM is the topic of this paper.  It automatically 
controls a group of unmanned aerial vehicles (UAVs) that are cooperatively making 
atmospheric measurements. 

The DM procedure that uses a GP as a data mining function to create a subtree of 
UAVRM is discussed.  The resulting decision logic for the RMs is rendered in the 
form of fuzzy decision trees.  The fitness function, bloat control methods, data base, 
etc., for the tree to be evolved are described.  Innovative bloat control methods using 
computer algebra based simplification are given.  A subset of the fuzzy rules used by 
the GP to help accelerate convergence of the GP and improve the quality of the results 
is provided.  Experimental methods of validating the evolved decision logic are dis-
cussed to support the effectiveness of the data mined results. 
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