

Genetic program based data mining to reverse engineer digital logic

James F. Smith III∗, ThanhVu H. Nguyen

Naval Research Laboratory, Code 5741, Washington, D.C., 20375-5000

ABSTRACT

A data mining based procedure for automated reverse engineering and defect discovery has been developed. The data
mining algorithm for reverse engineering uses a genetic program (GP) as a data mining function. A genetic program is
an algorithm based on the theory of evolution that automatically evolves populations of computer programs or
mathematical expressions, eventually selecting one that is optimal in the sense it maximizes a measure of effectiveness,
referred to as a fitness function. The system to be reverse engineered is typically a sensor. Design documents for the
sensor are not available and conditions prevent the sensor from being taken apart. The sensor is used to create a
database of input signals and output measurements. Rules about the likely design properties of the sensor are collected
from experts. The rules are used to create a fitness function for the genetic program. Genetic program based data
mining is then conducted. This procedure incorporates not only the experts’ rules into the fitness function, but also the
information in the database. The information extracted through this process is the internal design specifications of the
sensor. Uncertainty related to the input-output database and the expert based rule set can significantly alter the reverse
engineering results. Significant experimental and theoretical results related to GP based data mining for reverse
engineering will be provided. Methods of quantifying uncertainty and its effects will be presented. Finally methods for
reducing the uncertainty will be examined.

Keywords: data mining, knowledge discovery, genetic programs, genetic algorithms, reverse engineering, defect
discovery

1. INTRODUCTION

An engineer must design a signal that will yield a particular type of output from a sensor device (SD). The engineer
does not have design specifications for the sensor system and the machine may not be disassembled or invasively
examined. The engineer might attempt to find the correct signal through trial and error, but this would be very time
consuming and access to experimental resources is very expensive. To deal with this problem a genetic program (GP)
based data mining (DM) procedure has been invented1.

A genetic program is an algorithm based on the theory of evolution that automatically evolves populations of computer
programs or mathematical expressions, eventually selecting one that is optimal in the sense it maximizes a measure of
effectiveness, referred to as a fitness function2-5. The system to be reverse engineered is typically a sensor. The sensor is
used to create a database of input signals and output measurements. Rules about the likely design properties of the
sensor are collected from experts. The rules are used to create a fitness function for the genetic program. Genetic
program based data mining is then conducted3-6. This procedure incorporates not only experts’ rules into the fitness
function, but also the information in the database. The information extracted through this process is the internal design
specifications of the sensor. The design properties extracted through this process can be used to design a signal that will
produce a desired output1.

GPs require a terminal set and function set as inputs. The terminals are the actual variables of the problem. These can
include a variable like “x” used as a symbol in building a polynomial and also real constants. The function set consists
of a list of functions that can operate on the variables. When a GP was used as a DM function in the past to
automatically create fuzzy decision trees, the terminals consisted of fuzzy root concepts and the functions consisted of
fuzzy logical connectives and fuzzy modifiers3-5.

∗ Correspondence: Email: jfsmith@drsews.nrl.navy.mil

Data Mining, Intrusion Detection, Information Assurance, and Data Networks Security 2006,
edited by Belur V. Dasarathy, Proc. of SPIE Vol. 6241, 624103, (2006) · 0277-786X/06/$15 · doi: 10.1117/12.664952

Proc. of SPIE Vol. 6241 624103-1

When the GP is used as a data mining function, a database of input and output information is required. In the case of
fuzzy decision trees the database represented a collection of scenarios about which the fuzzy decision tree to be evolved
would make decisions. The database also had entries created by experts representing decisions about the scenarios. The
optimal fuzzy decision tree would be the one that could most closely reproduce the experts’ decisions about the
scenarios. When the GP is used as a data mining function for evolving digital logic (DL), the database contains inputs to
the DL as well as measured outputs. The experts’ opinions are manifested in the selection of the input and associated
output to be included in the database. For the DL case an additional form of input consisting of “rules” about DL
construction are included.

Section 2 discusses data mining and the use of a genetic program as a data mining function. Section 3 examines one of
the digital logic designs to be reverse engineered using genetic program based data mining. Section 4 explains the
genetic program’s terminal set, function set, and fitness function. Section 4 also gives detailed formulations of the rule
fitness, fitness score, input-output fitness, and overall fitness. Closed form results for a class of digital logic maps that
provide a global maximum for the rule fitness are given. From these closed form results a short input-output (IO) data
base is derived in close-form to facilitate uncertainty analysis. Section 5 provides experimental results with detailed
descriptions of the evolutionary properties. The class of solutions found in section 4 is shown to be intrinsically related
to the GP’s evolutionary process. Finally, section 6 provides conclusions.

2. EVOLUTIONARY ALGORITHM BASED DATA MINING

Data mining is the efficient extraction of valuable non-obvious information embedded in a large quantity of data6. Data
mining consists of three steps: the construction of a database that represents truth; the calling of the data mining function
to extract the valuable information, e.g., a clustering algorithm, neural net, genetic algorithm, genetic program, etc; and
finally determining the value of the information extracted in the second step, this generally involves visualization.

When used for reverse engineering, the GP, typically data mines a database to determine a graph-theoretic structure, e.g.,
a system’s DL diagram or an algorithm’s flow chart or decision tree3-5. The GP mines the information from a database
consisting of input and output values, e.g., a set of inputs to a sensor and its measured outputs. GP based data mining
will be applied to the construction of the DL described in section 3.

To use the genetic program it is necessary to construct terminal and function sets relevant to the problem. Before the
specific terminal and function sets for the reverse engineering problems are described, a more detailed description of one
of the digital logic examples to be considered will be given in section 3.

3. THE DIGITAL LOGIC TO BE REVERSE ENGINEERED

One DL design to be reverse engineered is depicted in Figure 1. This DL is not known to the GP. The GP only has
access to a database of input signals to the DL and measured output, as well as, a database of rules provided by experts
for building the DL.

In Figure 1, the DL consists of three input channels each with a sensor attached. The sensors receive signals from
sources one, two and three. Only measurements from sources one, the central source is of interest. Due to the geometry
of the sources and properties of the sensors only sensor two can receive emissions from source one that are significant.
Unfortunately, sensor two’s measurement may be corrupted by emissions from sources two and three. The digital logic
is constructed so that if there were significant corruption of sensor two’s measurements, then the final OR-gate returns
unity, so the measurements can be ignored.

In Figure 1 there are a number of DL elements depicted that are used repeatedly. DL components and signals will
ultimately become elements of the GP’s terminal and function sets. The sensors in Figure 1 will receive an analog signal
and convert it to a digital form, i.e., they will map real-valued input to the set of integers. A sampling window of size N
is used, i.e., the signal is sampled every ∆t seconds for a total of N samples in that window. The sample is indicated by
the vector js

r
 in (1) with sampling beginning at time to. The j-subscript implies the signal originated in the jth source,

where j=1,2,3,

Proc. of SPIE Vol. 6241 624103-2

]))1((,...),(),([tNtsttstss ojojojj ∆⋅−+∆+=

r
. (1)

The DL function, SUM, given explicitly in (2), represents the logarithmic sum of the absolute value of the time
components of the digitized input that has been received for a single window of length N,

⎥
⎦

⎤
⎢
⎣

⎡
∆⋅−+= ∑

=

N

k
ojj tktssSUM

1
))1((log)(

r
.

(2)

The elements labeled Hi, for i=1,2,3, are Heaviside step functions as given in (3). If the input is greater than or equal to
a threshold, τi, for i=1,2,3; then a value of unity is transmitted, otherwise a zero is transmitted,

⎩
⎨
⎧

<
≥

=
i

i
i sif

sif
sH

τ
τ

,0
,1

)(.
(3)

The DL function, MAX, given in (4), returns the common logarithm of the maximum absolute value of the time
components of the input signal for a single window of length N. The element labeled DIFF, takes the difference
between input to its first and second arguments as indicated in (5).

⎥
⎦

⎤
⎢
⎣

⎡
∆⋅−+= ∨

=
))1((log)(

1
tktssMAX oj

N

k
j
r

(4)

2121),(IIIIDIFF −= (5)

S1+S2+S3S2

SUM

MAX

SUM

DIFF H1

H2H3

AND3

SUM

DIFFH1

H2 H3

AND3

ORDELAY3 ORDELAY3

OR2

SOURCE 2 SOURCE 1 SOURCE 3

SENSOR 1

SENSOR 2 S3

SENSOR 3

21 12

S1+S2+S3S2

SUM

MAX

SUM

DIFF H1

H2H3

AND3

SUM

DIFFH1

H2 H3

AND3

ORDELAY3 ORDELAY3

OR2

SOURCE 2 SOURCE 1 SOURCE 3

SENSOR 1

SENSOR 2 S3

SENSOR 3

2211 12 1122

Figure 1: A system of three sensors designed to measure signals from source one while minimizing the
corrupting influences of signals from sources two and three.

Proc. of SPIE Vol. 6241 624103-3

The DL function, OR3DELAY, takes only Boolean inputs, i.e., it expects zero or one as an input. It waits until it has
three consecutive inputs from three consecutive time windows, hence the “3” in its name. Once it receives three
consecutive inputs, it yields as an output the maximum of its inputs. Also not depicted, but used in the GP’s function set
are AND3DELAY, which takes three inputs of zero or one corresponding to three consecutive time windows and yields
as output the minimum of its inputs. Finally, the symbols labeled AND3, OR3, AND2, and OR2 are the conventional
logical connectives AND and OR, with the numerical designation indicating the number of inputs expected, e.g., AND3
expects three Boolean inputs.

The signals are additive, at any given time sensor two may record a superposition of the three sources’ transmissions,
which is represented by s1(t)+ s2(t) + s3(t). If the three sensors’ signals are of sufficient magnitude then this is
characteristic of corruption and the final OR in Figure 1 returns unity.

4. TERMINAL SET, FUNCTION SET, FITNESS FUNCTIONS, CLOSED FORM RESULTS FOR A

CLASS OF OPTIMAL DL MAPS AND INPUT-OUTPUT DATABASE

This section describes the terminal set, function set, fitness functions, closed form results for a class of DL designs and
an input-output database. The description is given in terms of DL elements and properties, but the genetic program
based reverse engineering technique is very general and can be applied to any system that can be described in a graph
theoretic language, e.g., decision processes described in terms of decision trees3-5.

4.1 Terminal and function sets

The terminal set consists of the following elements:

T={SUM_SIG123, MAX_SIG123, SUM_SIG2, MAX_SIG2, SUM_SIG3, MAX_SIG3},

(6)

where

SUM_SIG123 = SUM(321 sss
rrr

++), (7)

MAX_SIG123 = MAX(321 sss
rrr

++), (8)

SUM_SIG2 = SUM(2s
r

), (9)

MAX_SIG2 = MAX(2s
r

), (10)

SUM_SIG3 = SUM(3s
r

), (11)

MAX_SIG3 = MAX(3s
r

). (12)

All sensor measurements begin at time, to.

The function set consists of the following elements:

F={AND3, OR3, AND2, OR2, AND3DELAY, OR3DELAY, H1, H2, H3, DIFF}.

(13)

The function AND3DELAY is not used in Figure 1. By including it, the GP’s ability to discriminate against extraneous
functions is emphasized.

One of the DL designs the GP is to evolve is given in Figure 1. The GP’s ability to do this will be determined largely by

Proc. of SPIE Vol. 6241 624103-4

the fitness function and the underlying databases to be discussed. The chromosome to be evolved by the GP is given in
Figure 1 and represented in prefix notation in (14).

OR2 OR3DELAY AND3 H3 SUM_SIG3 H2 DIFF SUM_SIG3 SUM_SIG123 H1 MAX_SIG123
OR3DELAY AND3 H3 SUM_SIG2 H2 DIFF SUM_SIG2 SUM_SIG123 H1 MAX_SIG123

(14)

4.2 Overall fitness, rule fitness, input-output fitness and database structure

As with all GPs there must be a fitness function for evaluation of the evolving population of chromosomes. The fitness
function, referred to as the overall fitness (OF) denoted as OFf is actually the sum of two other fitness functions. These
functions are the rule fitness (RF) and the input-output fitness (IOF) denoted as RFf and IOFf , respectively. The rule
fitness is given in (15) where the indicator function, iI is unity if the ith rule in Table 1 is satisfied and zero otherwise,
and iv is the value of the ith rule as given in Table 1,

∑
=

⋅=
12

1i
iiRF vIf .

(15)

Let jDL denote the jth element of the evolving population of chromosomes within the GP for psm,,2,1j K= where

psm is the population size, i.e., the number of chromosomes. Let each jDL consists of an OR2 or AND2 that connects

two subgraphs, denoted as leftDLj _ and rightDLj _ . Let ()ς_jDLl be the length, i.e., the number of nodes in

ς_jDL , for { }rightleft,∈ς . According to Table 1, if ()ς_jDLl is greater than or equal to 20 then the parsimony

pressure, ()ςα _jp DLl⋅ is subtracted from the rule fitness followed by division by 100, ultimately yielding the rule

score, denoted as RSg . This subtraction is done if either ()leftDLl j _ or ()rightDLl j _ exceeds 20. The quantity pα is
referred to as the parsimony coefficient1. The rule score can be expressed compactly as

() () ()[] (){ }

() ()[] (){ }rightDLlrightDLlrightDLfc

leftDLlleftDLlleftDLfcDLg

jpjjRF

jpjjRFjRS

_20__
100

_20__
100

⋅⋅−−+

⋅⋅−−=

αχ

αχ
.

(16)

The parameter c in (16) is the product of the indicator functions for rules 14-21 in Table 1 for the closed form results in
this section and c is unity for the computational results in section 5.

If the rule score exceeds the rule threshold denoted as, RTκ then and only then is the input-output fitness evaluated. By
forcing the rule score to exceed a threshold before the input-output fitness is evaluated a great deal of computational
complexity is avoided.

Let TDL denote the true digital logic diagram that underlies the SD used to construct the input-output database. For the
examples considered in this paper let there be three signals. The input-output database is assumed to have the following
structure

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

mm
3

m
2

m
1

22
3

2
2

2
1

11
3

1
2

1
1

DB

BSSS

BSSS
BSSS

M
MMMM

.

(17)

Proc. of SPIE Vol. 6241 624103-5

RULE SUMMARY
R1: If either OR3DELAY or
AND3DELAY are present during
rule fitness evaluation add 51 =ν .

R8: no_diff2H= number of times a DIFF
feeds into a Heaviside step function.

no_diff = number of DIFF operators in the
DL. During rule fitness evaluation add

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⋅=

diff_no
H2diff_no58ν .

R15 Each subgraph takes the same form,
i.e., it is a function of z(SIG(i), SIG123)
where i=2 for one subgraph and i=3 for
the other. If this rule is satisfied then

1I15 = , otherwise 0I15 = .

R2: If R1 is satisfied and
OR3DELAY or AND3DELAY are
present during rule fitness
evaluation then add 62 =ν .

R9: no_diffw2sig= no. times two consecutive
signal feed into a DIFF. During rule fitness
evaluation add

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⋅=

diff_no
sig2diffw_no59ν .

R16 Join the z(SIG2,SIG123)and
z(SIG3,SIG123) subgraphs using OR2 or
AND2. If this rule is satisfied then

1I16 = , otherwise 0I16 =

R3: If AND3 or OR3 are present
during fitness evaluation add

53 =ν .

R10: no_diffw2diffsig= no. times a DIFF takes
two different signals. During rule fitness

evaluation add ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⋅=

diff_no
diffsig2diffw_no510ν .

R17: The threshold 2τ is used after the
DIFF. If this rule is satisfied then

1I17 = , otherwise 0I17 =

R4: If none of the three comparators
denoted as 3,2,1i,Hi = follow
AND3 or OR3 during fitness
evaluation add 34 =ν .

R11: no_maxorsum = number of time DIFF
takes two MAX_SIG input or two SUM_SIG
inputs. During rule fitness evaluation add

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⋅=

diff_no
orsummax_no511ν .

R18: The structure
σσ
jim AdiffAH takes the form
σσ

}3,2,1{i2 AdiffAH where

{ } { }3or2i = . If this rule is satisfied
then 1I18 = , otherwise 0I18 =

R5: If there is only one delay
present, i.e., in the form of
OR3DELAY or AND3DELAY during
rule fitness evaluation add 55 =ν .

R12: During rule fitness evaluation add

diff_no
5

12 =ν .
R19: All thresholds must be used. If this
rule is satisfied then 1I19 = , otherwise

0I19 =

R6: Let

have_not_alone_signal =

the number of times that
SUM_SIG_i or MAX_SIG_i,
i={1,2,3} or 2 or 3 is fed into

3,2,1i,Hi = or DIFF.

Let

num_signals= the number of times
SUM_SIG_i or MAX_SIG_i
for i={1,2,3} or 2 or 3 appears in the
chromosome..

During rule fitness evaluation add

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⋅

=

signals_num
signal_alone_not_have5

6ν

R13: Penalizes the rule fitness by subtracting
parsimony pressure if the chromosome length
is equal to or greater than 20 and divide the
difference by 100.

R20: Each subgraph takes the form
βασσ
jriqjim3 AHAHAdiffAHDCz =

as a result of the rules above. Assume
that σβ ≠ and σα = . If this rule is
satisfied then 1I20 = , otherwise 0I20 =

R7: If none of the 3,2,1i,Hi = are
adjacent to each to each other then
during fitness evaluation add

57 =ν

R14 One subgraph of the DL uses SIG2 and
SIG123 as input; the other side uses SIG3 and
SIG123 as input. If this rule is satisfied then

1I14 = , otherwise 0I14 =

R21: Each subgraph should be as short as
is consistent with the above rules. If this
rule is satisfied then 1I21 = , otherwise

0I21 = .

Table 1: Rule set for closed form results and computational GP experiments.

Proc. of SPIE Vol. 6241 624103-6

Where
k
jS is the three time window input from the jth source for the kth input; { }1,0Bk ∈ is the kth output from

TDL for k=1,2,…, m, i.e.,

m,,2,1kfor;S,S,SDLB
k
3

k
2

k
1

Tk K=⎟
⎠
⎞

⎜
⎝
⎛= .

(18)

The input-output fitness for the jth chromosome, jDL , is defined as

()
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
∑ −⎟

⎠
⎞

⎜
⎝
⎛+=

=

2m

1k

kk
3

k
2

k
1jDBIOF BS,S,SDL11M,jf .

(19)

The overall fitness, OFf , for the jth chromosome can be written as

() () ()() ()DBIOFRTjRSjRSDBOF M,jfDLgDLgM,jf ⋅−+= κχ . (20)

It is important to recall that in actual implementation, the input-output fitness is only evaluated if the rule fitness is
greater than or equal to the rule threshold. Selectively evaluating the input-output fitness greatly reduces the
computational complexity and hence the run-time of the GP.

4.3 Closed form results for class of DL maps and database that maximize the various fitness functions

It is possible through inspection of (16) to write down a set denoted as, MLDLZ , of minimum length DL maps that result
in a global maximum for the rule score. Analysis of MLDLZ makes it possible to also write down a closed form
expression for the image set, denoted as MLDLR , under the DLs making up MLDLZ . The elements of MLDLR can be
written as explicit functions of the parameters that characterize distinct elements of MLDLZ . From the explicit form of

MLDLR it is possible to invert out a database matrix with closed form expressions for its elements. The closed form
expressions are given in terms of sensor system parameters. Table 2 gives a small subset of a database created in this
fashion. A database given explicitly in terms of the sensor system parameters can be used in uncertainty analysis and GP
convergence tests. It is readily shown using the rule set and the closed form database that emerges from this approach
that loss of rules or rows of the IO database can result in not one but many DLs that maximize the overall fitness.

Preliminary to the development described above it is useful to define the following subsets of the terminal and function
sets. Let

{ }DELAY3OR,DELAY3ANDDELAYD =∈ ;

{ }3OR,3AND3CONNC3 =∈ ;

{ }2OR,2AND2CONNC2 =∈ ;

{ }321 H,H,HCOMP = ;

{

}.123SIG_SUM,3SIG_SUM,2SIG_SUM,1SIG_SUM

,123SIG_MAX,3SIG_MAX,2SIG_MAX,1SIG_MAXMAXSUMA,A,A,A jiba K=∈βασσ

(21)

(22)

(23)

(24)

(25)

Proc. of SPIE Vol. 6241 624103-7

Input-Output Table for Three Signal Example

Component

q
1γ q

2
γ q

3
γ 'q

1
γ 'q

2
γ 'q

3
γ Window2 Window3 Output

OR2 310τ 1 3102 τ⋅− 0 0 0 ()NO
r

 ()NO
r

 1

OR3DELAY 310τ 310τ− 310τ− 0 0 0 ()NO
r

 ()NO
r

 1
AND3 1 1 310τ 0 0 0 ()NO

r
 ()NO

r
 0

AND3 310τ 1 1 0 0 0 ()NO
r

 ()NO
r

 0

3τ along
Auxillary
Antenna

110τ 110τ 310τ− 0 0 0 ()NO
r

 ()NO
r

 1

Table 2: Subset of the Input-Output data base derived from the rules in Table 1.

The parameters ασ , and β carry the value “MAX” or “SUM” and i,b,a and j take the values { }{ }{ },3,2,1 and { }3,2,1 .

As examples of this notation, { }
MAX
3A corresponds to MAX_SIG3, whereas { }

SUM
3,2,1A corresponds to SUM_SIG123.

It follows from Rules 1-13 of Table 1 that subclass of minimum length DL maps that maximize the rule score take the
following form

() βασσβασ jriqbal33 AHAHADIFFAHDCr,q,,,,j,i,b,a,C,Dz = , (26)

where

{ } { }{ }{ } 3,2,1r,q,l;3,2,1,3,2,1b,aba ==≠ . (27)

Rules 1-13 only govern half the DL design, i.e., one subgraph of the tree. It follows from Rule 14 of Table 1 that the
other subgraph of the DL map will also take a form given by (26). It follows from Rules 15-21 that the DL map that
includes both subgraphs takes the form

() { }{ }{ }{ }() { }{ }{ }{ }()r,q,,,,3,2,1,3,3,2,1,3,C,Dzr,q,,,,3,2,1,2,3,2,1,2,C,DzCr,q,,,,C,DZ 3323 βσσβσσβσσ = , (28)

where

βσ ≠ . (29)

Also from Rule 19 of Table 1 all thresholds must be used, so since threshold two has been used already, once one
additional threshold is assigned the other is known.

Equation (28) gives a typical element of MLDLZ . The use of all 21 rules in Table 1 reduces MLDLZ to a set with 32
elements. It would hardly be worth using a GP for such a small number of alternative solutions. The 21 rules of Table 1
allow simple closed form results for the elements of MLDLZ . Likewise, the simplicity of MLDLZ arising from the 21
rules allows a database to be inverted in closed form. Under the database the overall fitness will have a single global
maximum at the desired DL map, i.e., TDL . The database subset taken from a much larger database given in Table 2 is
also a closed form result, exhibiting the database matrix’s explicit dependence on system parameter, i.e., thresholds.
Table 2 is a subset of a database constructed using only rules 1-16 from Table 1.

The first and one of the most important steps in data mining is the construction of the database. The database is
generally constructed by or at least “cleansed” by a domain expert so that it reflects truth. For this example it is valuable

Proc. of SPIE Vol. 6241 624103-8

to construct an ideal database. This database can actually be derived mathematically and rendered in closed form as
explicit functions of the system parameters and DL graph labels that must be determined. A database of this kind is very
effective in studying the effect of uncertainty on the ultimate DL evolved. For the analysis in this paper uncertainty
refers to the loss of a rule or rules from Table 1 or the loss of at least one row from the database matrix given in Table 2.

Before giving the database subset it is essential to define some notation. Let

() mqiforNOq
i

q
i

q
i ,,2,1;3,2,1;2,, K
r

==⎥
⎦

⎤
⎢
⎣

⎡
−

′
=Γ γγ ;

(30)

where q
iγ and

′q
iγ are the first and second pulse values for the signal denoted by q

iΓ
r

. The quantity ()nO is defined to

be a row vector consisting of n zeros. The quantity q
iΓ
r

 is the ith source signal for the qth measurement to be stored in
the database, i.e., the qth row in the database matrix (17) for one time window.

Table 2 provides a subset of a database derived by solving an analog of (28) for rules 1-16, by inspection or solving
systems of inequalities arising from the analog of (28). Each row of Table 2 is determined to encourage the GP to place
a particular label on the graph, the label of interest being given in the first column of that row. As indicated in the first

row, the second through seventh columns give the values of q
iγ and

′q
iγ for signals i=1,2, and 3. The entry ()NO

r

implies there are N zeros in the window. There is no need to have separate entries for each source signal for windows
two and three as all three signals exhibit the same behavior, i.e., they have zero entries for the final two windows. The
final column gives the simulated measured output of the system of interest.

Also, under ideal conditions there is great freedom in specifying input. When making measurements using a real SD the
freedom to specify any desired input would not exists. The SD would only accept certain inputs, the output would likely
be corrupted by noise and might be characterized by lost data. Given these difficulties a real database must be many
orders of magnitude larger to attempt to deal with corruption and the fact that the observer could not select the most
desirable input-output entries.

The rule set and database in Tables 1 and 2, respectively, have value for understanding the nature of uncertainty in
expertise and data. If certain rules are removed from Table 1 then the number of potential DL maps grows rapidly. For
example, if Rule 19 is eliminated from Table 1 then between the remaining rules and the database there is not enough
information to uniquely specify the threshold labeling. So TDL is no longer uniquely determined. The resulting DL
maps will have underlying graphs that in graph-theoretic terms are isomorphic to the graph of TDL . An isomorphism
exists between two graphs if there exists a map that establishes a one-to-one correspondence between the vertices of the
two graphs and the map preserves edges. If the goal of the observer was to determine a signal that would produce a
certain response from the SD then obtaining DL maps that differ only in threshold labeling is frequently enough. If the
observer knows the maximum possible threshold for the system, but does not know which thresholds label particular
nodes, they can in many instances create a signal that gives the desired response by simply increasing the energy in the
signal to correspond to the potential of the maximum threshold labeling a particular node. So in this case rule and
database uncertainty is not an extreme liability. The input signal’s functional form does not change; the true cost of
uncertainty is a minor increase in the energy contained in the signal.

5. DATA MINING RESULTS

In this section two different DL schemes data mined by the GP are considered. The two examples presented here are
representative of the many experiments that have been conducted to show the effectiveness of the GP based data mining
procedure presented in this paper. The first is the DL represented in (14) and also in Figure 1. This DL will assume the
value of TDL for the discussion below. Using various databases too large to reproduce here and different random
number generator seeds, the GP was able to reverse engineer (14) in no more than 76 GP generations. The different
number of generations and amounts of CPU time required reflects the effect of different input-output databases and also

Proc. of SPIE Vol. 6241 624103-9

the random number generator seeds. One database may constrain the evolutionary process more than another resulting
in fitness values that over time push the population more rapidly toward TDL . Also, since the initial population is
generated randomly; and crossover, mutation, architecture altering steps1 (AAS) and symmetrical replication1 (SR) have
random aspects, a change in the seed of the random number generator can also impact run-time.

To get a feel for the evolutionary process it is useful to examine some intermediate generations that lead to TDL . For the
case in which (14) is reverse engineered in 76 generations the elite chromosomes found for different generations are
provided in Table 3 with the 76th generation reproducing the correct chromosome given in (14).

Generation Best Chromosome found in the Population for the Indicated Generation
1 OR2 H2 DIFF SUM_SIG123 MAX_SIG123 OR2 DIFF MAX_SIG2 H1 MAX_SIG2 SUM_SIG3

25 OR2 AND3DELAY OR3 H3 MAX_SIG2 H2 SUM_SIG123 H2 DIFF MAX_SIG2 MAX_SIG123 AND3DELAY OR3
H2 SUM_SIG2 SUM_SIG3 H2 DIFF MAX_SIG2 MAX_SIG123

40 OR2 OR3DELAY AND3 H1 MAX_SIG2 H1 MAX_SIG123 H2 DIFF SUM_SIG2 SUM_SIG123 AND3DELAY AND3
H3 SUM_SIG3 H1 SUM_SIG2 H2 DIFF SUM_SIG2 SUM_SIG3

50 OR2 OR3DELAY AND3 H1 MAX_SIG2 H1 MAX_SIG123 H2 DIFF SUM_SIG2 SUM_SIG123 OR3DELAY AND3
H1 MAX_SIG3 H1 MAX_SIG123 H2 DIFF SUM_SIG3 SUM_SIG123

76 OR2 OR3DELAY AND3 H1 MAX_SIG123 H3 SUM_SIG2 H2 DIFF SUM_SIG2 SUM_SIG123 OR3DELAY AND3
H1 MAX_SIG123 H3 SUM_SIG3 H2 DIFF SUM_SIG3 SUM_SIG123

Table 3: Evolution of the DL depicted in Figure 1

The chromosomes entered into Table 3 reflect some of the characteristics observed during the evolutionary process.
From the first generation forward the GP is able to find best candidates that have an OR2 at the end of the chromosome.
This property arises from Rule 16 in Table 1. The presence of two DIFF operators in the first generation is also
promising. The best chromosome for the first generation is much too short when compared to the desired result.

New innovations are found in generation 25 in that both arguments of both DIFFs use MAX functions as well as the
SIG123 structure. Even though it is expected that both arguments will ultimately use SUM functions, the use of a
common function for both arguments may show evolution in the proper direction. Both DIFF operators are preceded by
H2 which is what is found in (14). Even with these innovations the best chromosome of generation 25 is far from the
correct result.

The best chromosome of the 40th generation has subgraphs consistent with the closed form result of (26). All
generations after the 26th have elite chromosomes that assume this form. The computational results use a smaller set of
rules, i.e., rules 1-16 than those used in deriving (27-29) so the rules alone do not require that the solutions converge to
this form. The GP’s effort from generation 27 through 76 involves finding a solution with the proper node labels.
Various rows in the IO database contribute to proper labeling, e.g., if the fifth row in the database subset in Table 2 is
deleted then it is likely the final GP solution would not have proper threshold labeling. An improper threshold value is
undesirable from the standpoint of trying to reproduce the exact digital logic. If the goal is to produce an input signal
that produces unity as an output then even with the threshold value wrong, as long as the input signal has sufficient
energy to take into account uncertainty, then the desired output is obtained. In conclusion, the ultimate cost of
information uncertainty in this case is a small amount of additional energy.

The best chromosome of the 50th generation is far closer to (14). The MAX functions in the arguments of the DIFF have
been replaced by SUM functions. The arguments of the DIFF operators are the ones for the final result and the output of
both DIFFs is passed into H2 as found in (14). In this chromosome replacing H1 MAX_SIG2 with H3 SUM_SIG2 and H1
MAX_SIG3 with H3 SUM_SIG3 would yield the correct result. Finally, the desired result is found in generation 76.

For a second example consider the DL given below in (31) as TDL , i.e., truth,

OR2 OR3DELAY AND3 H1 SUM_SIG123 H3 MAX_SIG2 H2 DIFF MAX_SIG2 MAX_SIG123 OR3DELAY AND3 H1
SUM_SIG123 H3 MAX_SIG3 H2 DIFF MAX_SIG3 MAX_SIG123.

(31)

The GPs evolutionary process for inverting (31) is summarized in Table 4.

Proc. of SPIE Vol. 6241 624103-10

This example is similar to (14), in fact if in (14) the MAX operations are replaced by the SUM operation and SUM
replaced by MAX then (31) is obtained. Given that (14) and (31) only differ in labeling of the underlying graph it is
anticipated that the GP based evolutionary processes that yield (14) and (31) would be similar. This anticipation is born
out, but there are differences in the evolutionary processes. One significant difference is that the chromosome in (31) is
evolved in a smaller number of generations than the one found in (14). There is nothing that is obvious about the rule set
or input-output data based used for both chromosomes that would favor one over the other. Experimentation seems to
indicate the difference in the number of generations required is related to the seed of the random number generator.

Generation Best Chromosome found in the Population for the Indicated Generation
1 OR2 SUM_SIG2 AND3DELAY DIFF SUM_SIG2 SUM_SIG123
8 OR2 AND3DELAY DIFF SUM_SIG3 SUM_SIG123 AND3DELAY H2 DIFF MAX_SIG2 MAX_SIG123

16 OR2 AND3DELAY OR3 H2 SUM_SIG2 SUM_SIG3 H2 DIFF MAX_SIG2 MAX_SIG123 OR3DELAY H2 OR3 H2
SUM_SIG2 SUM_SIG3 H2 DIFF MAX_SIG2 MAX_SIG123

30 OR2 OR3DELAY AND3 H2 MAX_SIG123 H3 MAX_SIG2 H2 DIFF MAX_SIG2 MAX_SIG123 AND3DELAY
AND3 H3 SUM_SIG2 H1 SUM_SIG123 H2 DIFF SUM_SIG2 SUM_SIG3

46 OR2 OR3DELAY AND3 H1 SUM_SIG123 H3 MAX_SIG2 H2 DIFF MAX_SIG2 MAX_SIG123 OR3DELAY AND3
H1 SUM_SIG123 H3 MAX_SIG3 H2 DIFF MAX_SIG3 MAX_SIG123

Table 4: Evolution of the DL given in (31).

Just as with the example in Table 3 the best chromosome of the first generation has an OR2 at the end, but is otherwise
too short and far removed from the correct answer. By the eighth generation the “H2 DIFF MAX_SIG2 MAX_SIG123”
structure has emerged. The best chromosome of the 16th generation preserves the best features of previous generations
and also makes use of an OR3DELAY, but it still has many defects. For all generations after the 26th generation the elite
chromosome has two subgraphs that take the form found in closed form in (26). The elite chromosome of the 30th
generation has many correct labels and incorrect ones. It illustrates how evolution can fluctuate from generation to
generation producing individuals of higher fitness, but departing significantly from the true DL in form. Finally in
generation 46 the GP converges having produced the correct DL design.

6. SUMMARY AND CONCLUSIONS

Genetic program (GP) based data mining has proven effective for reverse engineering the complex digital logic
underlying sensor devices (SDs) when the original design specifications for these devices are unavailable and invasive
study of the systems is impossible.

The database that was subjected to data mining consisted of known input to the digital logic (DL), the associated
measured output and a set of rules provided by experts relating to their assumptions about the digital logic. It is found
that having a set of expert rules in the database is essential; the measured output of the digital logic is rarely sufficient to
uniquely reverse engineer the design.

Explicit formulations of fitness functions and rules are given. Closed-form results for a class of optimal solutions to the
rule fitness are shown to be effective in understanding required input-output data base properties. The closed-form
results are also extremely useful in understanding the effect of rule or input-output database uncertainty on the final
solution evolved by the GP.

Experimental observation and theoretical analysis of the effects of uncertainty show that even when there is a significant
reduction in the quality of rule or input-output measurement information: the DL map evolved by the GP will still carry
enough information for the design of signals with specific properties. The creation of these signals is considered of
greater importance than having the exact DL design for the SD. So the results of the uncertainty analysis related to the
closed form expressions are deemed of great importance.

Significant experimental results and theoretical analysis are provided to support the above conclusions. Reverse
engineered DL examples are provided along with details of their evolutionary history and the implications of
uncertainty.

Proc. of SPIE Vol. 6241 624103-11

ACKNOWLEDGEMENTS

This work was sponsored by the Office of Naval Research. The authors would also like to acknowledge Dr.
Jeffrey Heyer for useful conversations about and support for an unrelated application of genetic algorithms.

REFERENCES

1. James F. Smith, III and ThanhVu H. Nguyen; “Data mining based automated reverse engineering and defect
discovery”, Data Mining, Intrusion Detection, Information Assurance, and Data Networks Security 2005, B. Dasarathy,
Vol. 5812, pp. 232-242, SPIE Proceedings, Orlando, 2005.
2. J.R., Koza, F.H. Bennett III, D. Andre, and M.A. Keane, Genetic Programming III: Darwinian Invention and Problem
Solving. Chapter 2, Morgan Kaufmann Publishers, San Francisco, 1999.
3. James F. Smith, III, “Fuzzy logic resource manager: real-time adaptation and self-organization”, Signal Processing,
Sensor Fusion, and Target Recognition XIII, I. Kadar, Vol. 5429, pp. 77-88, SPIE Proceedings, Orlando, 2004.
4. James F. Smith, III, “Fuzzy logic resource manager: decision tree topology, combined admissible regions and the self-
morphing property”, Signal Processing, Sensor Fusion, and Target Recognition XII, I. Kadar, pp. 104-114, SPIE
Proceedings, Orlando, 2003.
5. James F. Smith, III, “Fuzzy Logic Resource Manager: Evolving Fuzzy Decision Tree Structure that Adapts in Real-
Time,” Proceedings of the International Society of Information Fusion 2003, X. Wang, pp. 838-845, International
Society of Information Fusion Press, Cairns, Australia, 2003,
6. J.P. Bigus, Data Mining with Neural Nets, Chapter 1, McGraw-Hill, New York, 1996.

Proc. of SPIE Vol. 6241 624103-12

