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Abstract -A fuzzy logic resource allocation algorithm that mission and the result of a request for help during the mission.
enables a collection of unmanned aerial vehicles (UAVs) to auto- Finally, section V provides a summary.
matically cooperate to make meteorological measurements will
be discussed. Once in flight no human intervention is required. II. METEOROLOGICAL SAMPLING AND COOPERATIVE
Planning and real-time control algorithms determine the optimal AUTONOMOUS PLATFORMS
trajectory and points each UAV will sample, while taking into
account the UAVs' risk, risk tolerance, reliability, mission prior- For many applications it is useful to be able to make me-
ity, fuel limitations, mission cost, and related uncertainties. The teorological measurements in real-time. Examples include
approach is illustrated by a discussion of the fuzzy decision tree determining the index of refraction of the atmosphere to facili-
for UAV path assignment and related simulation. Simulations tate geo-location [1]; determination of the presence and extent
also show the ability of the control algorithm to allow UAVs to of such phenomena as radio holes and ducts, which may inter-
effectively cooperate to increase the UAV team's likelihood of fere with communications; tracking atmospheric contaminants
success. [2]; and sand suspended in the atmosphere that can interfere

with sensors.
I. INTRODUCTION The fuzzy logic based planning and control algorithms

that have been developed allow a collection of UAVs makingKnowledge of meteorological properties iS fundamental to
many decision processes. Due to personnel limitations and up the UAV team to engage in cooperative sampling of the

risks, it is useful if related measurement processes can be con- atmosphere in real-time without human intervention. Each
ducted in a fully automated fashion. Recently developed UAV will have its own control algorithm allowing it to deter-
fuzzy logic based algorithms that allow a collection of un-

mine new optimal trajectories in real-time subject to changingfuz loi bae algoriths tha alo a colcto of un- conditions. Also, the control algorithm on the UAVs will al-
manned aerial vehicles (UAVs) and an interferometer platform . . .
(IP) [1] to automatically collaborate will be discussed. The low them to cooperate to increase the probability of mission

UAVs measure the index of refraction in real-time to help success. There will be two different types of cooperation al-
determine the position of an electromagnetic source *(EMS) lowed by the control algorithm and three classes of help re-determine the position Of an electromagnetic source (EMS)3.
The IP is actually an airplane with an interferometer onboard quests.

that measures emissionsfrom theelectromagnThe first type of cooperation that the UAVs may exhibit isthamesue emsin frmteeetoantcsuc to support each other if there is evidence that an interesting
whose position is to be estimated. Each UAV has onboard its
own fuzzy logic based real-time control algorithm. The con- physical phenomenon has been discovered. If one UAV
trol algorithm renders each .AV.fully.autonomous;nohuman seems to have discovered a radio hole, it can request that an-trol~~~~~~aloihredr eac UA.ul uoomu;n ua other UAV or UAVs help determine the extent of the radio
intervention is necessary. The control algorithm aboard each...wilallow it to determine its own course,changecourse hole so the IP can fly around it. Similar cooperation can beUAV~~~~~~~~~~wilalo itt.eemn t w ore chang orse cried out if a UAV may have discovered other elevated ex-
to avoid danger, sample phenomena of interest that were not tended wether ms.
preplanned, and cooperate with other UAVs. te secd tet can exhibit

Section II provides an overview of the meteorological Thr tecontrolaloritis w he UAVsmanction-
sampling problem and a high level description of the planning
and control algorithms that render the UAV team fully ing or may be malfunctioning. If a UAV's internal diagnostics

autonomous. Section IImdsindicate a possible malfunction, then it will send out an omni-autonomous. Section III discusses the electromagnetic meas- . .
urement space, A ik A rsoedirectional request to the other UAVs for help. Each UAV

urementspagoithe,tioUriskUA iskctolerane a' .th pln- will calculate its priority for providing help using a fuzzy logicning algorithm. Section III also discusses the UAV path con-
struction algorithm that determines the minimum number of procedure described below. The UAVs send their priority for

UAVs required to complete the task, a fuzzy logic based ap- providing help message back to the requesting UAV. The
proach for assigning paths toUAVsandwhichUAVssrequester subsequently sends out a message informing the

be asiged t thovrallmision SecionIV iscusesex- group of the ID of the highest priority UAV. The high priority
perimental results including UAV path determination, UAV UA thnpoedtoadherqse.' ~~The support provided by the helping UAV can take onpahasinet dtriato f hc AV hud l h different forms. If the requester suspects a malfunction in its
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sensors, the helper may measure some of the same points ray emerges. Sample points arising from the highest probabil-
originally measured by the UAV in doubt. This will help es- ity hypothesis positions have priority one; sample points asso-
tablish the condition of the requester's sensors. If additional ciated with lower probability hypothesis positions, priority
sampling indicates the requester is malfunctioning, and repre- two; etc.
sents a liability to the group it will return to base. In this case Each sample point is surrounded by what are referred to
the supporter may take over the mission of the requester. as desirable neighborhoods. Depending on local weather,
Whether or not the supporter samples all the remaining sample topography, etc., the desirable neighborhoods are generally
points of the requester; subsequently, abandoning its original concentric closed balls with a degree of desirability assigned
points depends on the sample points' priorities. A fuzzy logic to each ball. The degree of desirability characterizes the an-
based procedure for determining sample point priorities is ticipated variation in the index of refraction. If for that region
discussed below. If it is established that the requester is not of the measurement space, the spatial variation of the index of
malfunctioning or the requester can still contribute to the mis- refraction is slow, the degree of desirability may assume its
sion's success it may remain in the field to complete its cur- maximum value of unity for a ball of radius measured in
rent mission. miles. For regions of space where the index of refraction's

III. PLANNING AND RISK spatial variation is greater, the degree of desirability may fall
off much more rapidly, approaching the minimum value of

The measurement space consists of the electromagnetic zero after just a mile or two.
propagation environment where UAVs and the IP make their The desirable region need not have spherical geometry.
measurements. This environment includes sample points and Rotational symmetry may be broken by a variety of processes,
the desirable neighborhoods that surround them. The sample e.g., an elevated duct, a radio hole, etc.
points or the desirable neighborhoods are where the UAVs The notion of a desirable neighborhood is motivated by
will make measurements. The method of determining the the fact that a sample point may also be a taboo point or reside
sample points and desirable neighborhoods is described be- within an undesirable neighborhood. In the case the sample
low. point coincides with or is near a taboo point and at least part of

The measurement space also includes taboo points and the the sample point's desirable neighborhood falls within the
undesirable neighborhoods that surround them. The taboo taboo point's undesirable neighborhood, the UAV may only
points are points of turbulence and other phenomena that sample within a desirable neighborhood that is consistent with
could threaten the UAVs. The undesirable neighborhoods its risk tolerance.
surrounding them also represent various degrees of risk. The A point may be labeled taboo for a variety of reasons. A
method of specifying taboo points and quantifying the degree taboo point and the undesirable neighborhoods containing the
of risk associated with their undesirable neighborhoods em- point generally represent a threat to the UAV. The threat may
ploys fuzzy logic and is discussed in this section. take the form of high winds, turbulence, icing conditions,

The planning algorithm allows the determination of the mountains, etc. The undesirable neighborhoods around the
minimum number of UAVs needed for the mission subject to taboo point relate to how spatially extensive the threat is. A
fuel constraints, risk, UAV cost, and importance of various method of quantifying risk and incorporating it into the path
points for sampling. Risk refers to turbulent regions or re- assignment algorithm is presented that offers conceptual im-
gions undesirable for other reasons, e.g., the presence of en- provements over an approach previously developed [1]. This
emy observers or physical obstructions. The planning algo- section uses fuzzy logic to quantify how much risk a given
rithm automatically establishes the order in which to send the neighborhood poses for a UAV. This quantitative risk is then
UAVs taking into account the UAV's value; onboard sensor incorporated into the UAV's cost for traveling through the
payload; onboard resources such as fuel, computer CPU and neighborhood as described in this section. Once the cost is
memory; etc. The priority of sample points and their desirable established an optimization algorithm is used to determine the
neighborhoods are taken into account. The planning algorithm best path for the UAV to reach its goal.
also calculates the optimal path around undesirable regions When determining the optimal path for the UAVs to fol-
routing the UAVs to or at least near the points to be sampled. low both the planning algorithm and the control algorithm

In the planning phase, the location of the EMS is un- running on each UAV take into account taboo points and the
known. Some positions are more likely than others for the undesirable neighborhood around each taboo point. The path
EMS's location. When establishing likely positions for the planning algorithm and control algorithm will not allow a
EMS, human experts are consulted. The experts provide sub- UAV to pass through a taboo point. Depending on the UAV's
jective probabilities of the EMS being located at a number of risk tolerance a UAV may pass through various neighbor-
positions. These likely EMS locations are referred as hy- hoods of the taboo point, subsequently experiencing various
pothesis positions. Ray-theoretic electromagnetic propagation degrees of risk. Both the concepts of risk and risk tolerance
[3] is conducted from each hypothesis position to each inter- are based on human expertise and employ rules each of which
ferometer element on the IP. The points on the sampling grid carry a degree of uncertainty. This uncertainty is born of lin-
nearest the points of each ray's passage are the sample points. guistic imprecision [4], the inability of human experts to spec-
The priority of a sample point is related to the subjective prob- ify a crisp assignment for risk. Owing to this uncertainty it is
ability of the hypothesis position from which the associated
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very effective to specify risk and risk tolerance in terms of For purposes of determining the optimal path, the UAV is
fuzzy logic. assumed to follow a rectilinear path consisting of connected

lines segments, where the beginning and ending points of each
A. Risk Fuzzy Decision Tree line segment reside on the UAV's sampling lattice. Let A and

Risk is represented as a fuzzy decision tree [5-10]. The B be two grid points on the UAV's sampling grid with corre-
risk subtree defined below is a subtree of the larger risk tree sponding position vectors, iA and iiB , respectively. Denote
that was actually used. The risk tree is used to define taboo the Euclidean distance between A and B as d(iA rB). Let
points and the undesirable neighborhoods surrounding the v(FA, i:B) be the speed at which the UAV travels in going from
taboo points.

The root concepts on the risk tree use the membership rA to rB. If both iA and ii are sample points then the
function defined in (1-3), UAV travels at sampling velocity, otherwise it travels at non-

sampling velocity. The path cost is given by
1, if r=0

34, if O<r<.1/AI path cost(QA,iB)=
/a7txqahoox)=< 2' if 1-Al<r. 2zAl (1) d(FA,FB)+g.ltO b risvk(t,rB). (6)

i4if 2A1l<r. 3/Al i=]
0, if r > 3Al V(rA rB )

r = ||X - tlaboo9 |l ' (2)
where ntaboo is the number oftaboo points, i.e., columns in the
taboo point matrix

qtaboo position of taboo point. (3) Taboo [t1t2.Qabo] (7)

where the "taboo point," 4taboo is the point at which the risk
phenomenon has been observed. The root concepts used on and (i = 1,2,..., ntaboo are the taboo points determined to ex-
the risk subtree are given in (4), and the subscript a is an ele- ists in the measurement space when path_ cos t(FA,rB ) is cal-
ment of the root concept set , RC, i.e., culated. The quantity, ,3, is an expert assigned parameter.

Note that path cos t(iAF ) is an effective time. When risk is
or E RC=4Mountains, High Tension Wires, - KB

ntabooBuildings, Trees, Smoke Plumes, Suspended not present, i.e., IT E riskVI,Fr) is zero, then
Sand, Birds/Insects, Other UA Vs, Air Polution, (4) i=1

Civilian, Own Military, Allied Military, Neutral path - cost(FA,rB) is the actual travel time. When risk is pre-
Military, Cold, Heat, Icing, Rain, Fog, Sleet, sent then the travel time is increased. The time increase will
Snow, Hail, Air Pocket, Wind, Wind Shear, Hos- be significant ifthe risk is high.
tile Action/Observation] If the candidate path for the mission consists of the fol-

lowing points on the UAV lattice given by the path matrix in
The norm in equation (2) iS typically taken as an Euclidean (8),
distance. The values taken by the quantity A/ will be dis-
cussed in a future publication. Path, =[,VI . Jrn] (8)

The fuzzy membership function for the composite concept
"risk" is defined as then the total path cost is defined to be

flrisk (qtaboo,X) macX a1(qta)oo . (5) n-I (9)aceRC total _ cos t(Pathi) _ path _cos t(J, J+1).
J=]

B. Optimal Paths andA UP Fuzzy Decision Tree
The best path algorithm is actually an optimization algo- Determining the optimal path for the ith UAV consists of

rithm that attempts to minimize a cost function to determine minimizing the total path cost given by (9) such that there is
the optimal trajectory for each UAV to follow, given a priori enough fuel left to complete the path.
knowledge. The cost function for the optimization algorithm The planning algorithm determines the path each UAV
takes into account various factors associated with the UAV's will pursue, which points will be sampled, the minimum num-
properties, mission and measurement space. Two significant ber of UAVs required for sampling the points and makes as-
quantities that contribute to the cost are the effective distance signments of UAVs for measurements at particular points.
between the initial and final proposed positions of the UAV UAVs are assigned as a function of their abilities to sample
and the risk associated with travel, high priority points first. The planning algorithm determines
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flight paths by assigning as many high priority points to a path Within the path specified by (10), let there be the follow-
as possible taking into account relative distances including ing sample points to be measured, Sj,j = 1,2.n,. Let the
sampling and non-sampling velocity, risk from taboo points,
and UAV fuel limitations. Once flight paths are determined, function prio assign priorities to the sample points, i.e,
the planning algorithm assigns the best UAV to each path us- prio(S1) is the priority ofthejth sample point. The values that
ing the fuzzy logic decision tree for path assignment described
in this section. prio can take are positive integers with one representing

The planning algorithm must assign UAVs to the flight the highest priority, two the next highest priority, etc. The
paths determined by the optimization procedure described mission priority (MP) for the kth Pathkis defined to be
below in this section. This is referred to as the UAV path as-
signment problem (UPAP). The planning algorithm makes
this assignment using the following fuzzy logic based proce- mission io(Pathk p 1
dure. To describe the decision tree it is necessary to develop m p(h prio)=(
some preliminary concepts and notation.

Each UAV will fly from lattice point to lattice point, i.e., The degree to which the path belongs to the related
grid point to grid point, let one such route be given by the ma- fuzzy concept MP is given by
trix of points,

Path =[P2, Pn.path (10)IAMP (Pathk) mission prio(Pathk) (15)

where the ordering of points gives the direction of the route,
i.e.,~ ~strtn at P.adedn tP.Le h ao onsb The fuzzy degree of reliability experts assign to the sen-i.e., starting at Pi and ending at Pi . Let the taboo points be sosfUA i)sdetdas srA i).Tsisael,1 1 . . . ~~~~~~~~~sorsof UAV(i) is denoted as Ausr (uAV(i)). This is a real

those given in (7). Let the degree of undesirability of the number between zero and one with one implying the sensors
neighborhood associated with taboo points, ti, i = 1,2,., ntaboo are very reliable and zero that they are totally unreliable.
be denoted jUrHk (t, p1) for the route points Likewise, Ansr(uA V(i)) is the fuzzy degree of reliability of

Pi, j = 1,2,..., npath. The definition of the mission risk (MR) other non-sensor systems onboard the UAV(i). This fuzzy
concept relates to any non-sensor system, e.g., propulsion,

1S computers, hard disk, deicing systems, etc. The value of
UAV(i) in units of $1000.00 is denoted as V(UAV(i)). The

ntaboo n~path /
mission - risk(Taboo, Pathk) A ri(pp) (11) amount of fuel that UAV(i) has at time tis denoted

i=i }=' fuel(UA V(i), t). All the UAVs participating in a mission are

assumed to leave base at time, t = to .
The degree to which the kth path belongs to the related LetU ( sfz grae o m

fuzycocetMRisgienb Let UAV(i)'s fuzzy grade of membership in the fuzzy
concept "risk tolerance" be denoted as Arisk-tol (UA V(i)). The

AMR (Taboo, Pathk) quantity, Arisk-tol (UA V(i)), is a number between zero and one
mission risk(Taboo, Pathk) (12) and will be simply referred to as UAV(i)'s risk tolerance. If

- the risk tolerance is near zero then the UAV should not be sent
max{mission_risk(Taboo, Path1)} on very risky missions. If the UAV's risk tolerance is near

one then it can be sent on very risky missions. It seems natu-
ral to compare "risk tolerance" to "Value." So the comparison

The mAV" operationbeasigne1 i tae ov . can be carried out on the same footing, a fuzzy concept ofble UAVs that can be assigned to the mission.
A fuzzy concept related to "mission risk" is "low risk." value should be defined.The fuzzy grade of membership of each UAV that can beThe fuzzy membership function for "low risk" denoted as
.LRisdefined as

assigned to the mission in the fuzzy concept "Value" is de-ALR is defined as fined as

ALR (Taboo, Pathk) min(1,a+ 1-AMR) (13) A Value(UA V(i))PLR g~~~~~~~~~~~~~~~~~~~~~~~v(UAV(i))-mx.Value(UA V(i))}(6max{Value(UAV(j))} (16)
where ae (0,i) is an expert defined parameter. The function i

of or is to make sure that "low risk" does not dominate calcu- The advantage of the concept of "risk tolerance" is that it
lain* eelpdblw gives the user an extra concept to exploit. If the UAV is not of

great relative value, but it still might be needed for a crucial
mission after the current one, it might be useful to give it a
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low risk tolerance so that it is not lost on the current mission. value of AILR this would not allow fine distinctions to be
This may allow it to be used on the following mission. made.

Another fuzzy concept and related fuzzy membership The logical connective AND2 is defined as
function that will be defined is "fast." A UAV is said to be
fast if it takes a short time to travel a particular path. Let the
T(UA V(i), Path) be the amount of time it will take UAV(i) to AND2 (/lA'AB ) 9AAjB (20)
fly and make measurements along Path. The fuzzy member- The fuzzy concept "RMP" combines the fuzzy concepts
ship function for the concept "fast" is defined as follows: "sr," "nsr," and "MP." The fuzzy membership function for

Sfast (UA V(i), Path) "RMP," denoted as IRmp is defined as

min,
T(UA V(i), Path) (17) ARLP

R miP(/Isr,Ansr,uMP) (21)Arrtmp mian2xfT(UA V(j), Path)} Both the membership functions for "VMR" and "RMP" can be
represented as fuzzy decision trees.

and Finally, the fuzzy membership function for the fuzzy con-
cept "assignment ofUAV(i) to the path" (AUP) is defined as

Arrtmp xlmin(usr,jUnsr ) £i,rel

min(l - AUrisk-tol' max(l - AMP' 62,MP ))- 3,rel 1AUP
URAI2 = (22)

where £1],rel 62,MP ,rel 'E (0o,] are expert assigned parame- AND2 u AND2 (AMv'AVMR)]= AMP AVMR
ters. The Heaviside step function denoted as% in (18) takes
the value one when its argument is greater than or equal to The fuzzy membership function for AUP is a decision tree
zero and is zero otherwise. that combines both "VMR" and "RMP" as subtrees. The use

The term e],rel min(l - Arisk-tol Jmaxc(1-AIMP' -2MP ))in of AND2 in (22) in two places renders AAUP more sensitive to
the Heaviside step function's argument in (18) can result in the values of u and AVMRthan it would be if the member-
Arrtmp going to zero if Arisk-tol or UMP are small enough. If
"Risk tolerance" and "mission priority" take low values then p to faUPtoo the value th(nPa sm) lf
depending on the value of e1]rel, the membership function for AUP were to take the value min(AKp, AVMR) then a small
the fuzzy concept "fast" may take the value zero. The pa- value of uRmp such that uRmp <,uvARwould cause ,u to

rameter £2,MP limits the effect of "mission priority." Even if take the value of uRmp independent of the value of AVMR .

the mission priority is very high, risk tolerance plays an im- The use of AND2 instead of min allows finer distinctions to
portant role. If the UAV has high risk tolerance and the path, be made. The second degree dependence of uRmp in (22)
high mission priority the UAV must have a minimum reliabil- results in a small value of AAUP if AUMt iS small, but AAUP iS
ity given by 63,rel . Finally, the motivation for the concept still dependent on AVMR This is consistent with expertise. If
"fast" is that a fast UAV experiences a lower relative risk the sensor or non-sensor reliabilities or mission priority are
since it is in the field less time and may be exposed to risk for small, AAUP should be small. Low reliability or priority re-
a shorter duration.

A fuzzy concept that combines "Value" and "mission sults in a faster decline in AUAUPthan high mission risk, high
risk" is "VMR" and its membership function denoted as UAV value, low UAV risk tolerance or the fact that a reliable
AVMR is defined as and risk-tolerant UAV is slow.

The fuzzy concept AUP is depicted as a tree in Fig. 1.
Leaves of the tree, i.e., those vertices of degree one are labeled

,u VMR=- mi(Mingrisk (tol Y I gv A ~Ifast IJLR (19 by the names of the fuzzy concepts described above. Vertices
AIVMKR- mlfl(flArj,skto,l - Av ), AND2 t fa.st 'ALRh')) (1 9) are labeled by the specific logical connective used, i.e., min

or AND2 . A circle on an edge indicates the fuzzy logic modi-
fier not. The fuzzy modifier not is defined as the complement

The use of AND2 in (19) allows distinctions to be made ofthe fuzzy set, i.e., let AA be the fuzzy membership function
between various values of I fast and ALR If AND2 were for the fuzzy concept A then membership function for not A is

replaced by a min in (19) then if A fast is low enough then given by 1-/1A
min(Afast 'ALR ) would take the value Afast independent of the Given the fuzzy grade of membership it is necessary to

defuzzify, i.e., make definite UAV-path assignments. Simply
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assigning the UAV with the highest fuzzy grade of member- rithms were tested. Due to space limitations only experiments
ship for a particular path to that path can give less than desir- involving two or three UAVs are discussed.
able results. The approach to defuzzification taken is as fol- In Figs. 2 and 3, experiments using two UAVs illustrate
lows: if the number ofUAVs is denoted as nUAv and likewise, how the control algorithm allows the UAVs to automatically
the number of paths is denoted by n where support each other to increase the probability their joint mis-

path ' sion is successful. Fig. 4 summarizes a three UAV experiment
nUAv 2 npath then consider the set of all possible permutations that exhibits the AUP decision tree's ability to assign UAVs to

of the npathUAVs selected from a total of nUAv UAVs. For paths in a fashion that makes effective use of available re-
sources.

each assignment of npathUAVs to the paths, add up the values Figs. 2-4 use the same labeling conventions. Sample

of UAU/P for that assignment over the paths. This sum is re- points are labeled by concentric circular regions colored in
different shades of gray. The lighter the shade of gray used toferred to as the assignment benefit (AB). The assignment with corapin,telwrheon'sgdefmmbsipnte

the hihestB is he on seleted. inall, a siia,poe color a point, the lower the point's grade ofmembership in the
threhighstABll is

A

the oneselected.inally,asmilarproc fuzzy concept "desirable neighborhood." The legend provides
dure iS followed if ncAV <flpath numerical values for the fuzzy grade of membership in the

fuzzy concept "desirable neighborhoods." If the fuzzy degree
AUP of desirability is high then the index of refraction is considered

/\D2 to be close to the index of refraction of the sample point at the
center of the desirable neighborhood. This allows the UAV to

RM
/l\ make significant measurements while avoiding undesirable

Lm |RMP neighborhoods.
z/M MN\MINIMIN\ Each sample point is labeled with an ordered pair. The

|SR NSR MP VR SR NRE MP first member of the ordered pair provides the index of the
sample point. The second member of the ordered pair pro-

MIN \ vides the point's priority. For example, if there are n sample
points and the qth sample point is of priority p, then that
point will be labeled with the ordered pair (q,p).

Points surrounded by star-shaped neighborhoods varying
|RISK-TOL VALUE-] FAST LOW-RISK from dark grey to white in color are taboo points. As with the

sample points, neighborhoods with darker shades of gray have
a higher grade of membership in the fuzzy concept "undesir-

Figure 1: The AUP subtree for the UAVRM. able neighborhood." The legend provides numerical values
for the fuzzy grade of membership in the fuzzy concept "un-

The decision tree for AUP given in (22) was constructed desirable neighborhood." UAVs with high risk tolerance may
using expertise provided by human experts. It is a significant fly through darker grey regions than those with low risk toler-
improvement over a previously developed fuzzy decision rule ance. When comparing planning and associated control pic-
for path assignment also constructed from expertise [11]. An tures, if a point ceases to be taboo, the neighborhood where it
alternate method of obtaining (22) is to evolve it using a ge- resides is marked by a very dim gray star as well as being la-
netic program (GP) [12]. A GP is a computer program based beled by a dialog box as being an "old taboo point." New
on the theory of evolution that evolves mathematical expres- taboo points and their associated undesirable neighborhoods
sions or computer programs that can be considered optimal in are labeled with dialog boxes indicating that they are "new."
a sense. The GP has been used as a data mining function [12] UAVs start their mission at the UAV base which is la-
to create the decision tree in (22). The GP data mined a sce- beled with a diamond-shaped marker. They fly in the direc-
nario database where each scenario had been labeled by an tion of the arrows labeling the various curves in Figs. 2-3.
expert. Expert rules were also incorporated to guide the evo- Fig. 2 depicts the sampling path determined by the plan-
lutionary process and improve convergence time. The deci- ning algorithm for an experiment involving two UAVs. The
sion tree in (22) has been evolved many times. The GP finds first, UAV(1) follows the dashed curve; the second, UAV(2),
the same AUP decision tree, over and over again independent the solid curve. The UAVs were assigned to the different
of the seed of the random number generator used to simulate a paths by the AUP fuzzy decision tree described in section III.
random evolutionary process. UAV(1) is assigned to sample all the highest priority points,

i.e., the priority one points. UAV(2) samples the lower prior-
ity points, i.e.; those with priority two. Due to the greedy na-

The planning and control algorithms described in the pre- ture of the point-path assignment algorithm, the highest prior-
vious sections have been the subject of a large number of ex- ity points are assigned for sampling first.
periments. This section provides a description of a small sub-
set of these experiments. They serve to illustrate how the algo-
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Figure 2: Trajectory of two UAVs as determined by the planning Figure 3: During flight, updates about environmental changes cause
algorithm and their paths assigned by AUP. the real-time control algorithms on the two UAVs to change their

trajectories.
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UAV path
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(a, b index, priority dg
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Y Plane

Figure 4: Three UAV mission that provides an example of the AUP decision tree's
assignments.

Fig. 3 depicts the actual flight path the UAVs take during ority one points, labeled (3,1) and (4,1), that UAV(1) was not
real-time. Initially, UAV(1) is successful in measuring sample able to sample are subsequently measured. After UAV(2)
points one and two as assigned it by the planning algorithm, measures sample point five, its new flight path allows it to
Just beyond sample point two, UAV(() experiences a mal- measure sample points three and four. UAV(2)'s control algo-
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field UAV(2) ofmthe malfunction. UAVV())coprintrol algol- peddimeas siginsample points three andfour.UV2'cotl tlo-

rithm determines a new path for UAV(2) to fly so that the pri- UAV(2), UAV(2) did not have enough fuel to measure sample
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