
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

Bringing Invariant Analysis to modern IDEs:
The DIG+ Extension for VS Code

Stefania Piciorea
George Mason University

USA

ThanhVu Nguyen
George Mason University

USA

ABSTRACT
Program invariants, which are properties that hold at specific pro-
gram locations, are important in formal program verification and
analysis. Traditional invariant generation methods using dynamic
and static analyses are abundant and powerful, supporting a wide
range of applications. However, these tools often remain under-
utilized due to their complex command-line interfaces and the
technical expertise required for usage.

To bridge the gap between research and practical application,
we have developed DIG+, which integrates the DIG invariant gen-
erator and the CIVL symbolic execution tool using the Language
Server Protocol (LSP) design used in modern IDEs, such as VS Code.
DIG+ simplifies the process of invariant generation by automating
setup tasks and providing an intuitive and familiar interface for
developers in VS Code. This integration allows users to generate
and check invariants directly within their favorite IDEs, enhancing
accessibility and usability. We hope DIG+ will inspire researchers
to develop similar IDE integration for their research tools, making
them more attractive to end users.

DIG+ can be downloaded from GitHub at https://github.com/
dynaroars/dig/tree/dig-vscode. A video demonstrating DIG+ is
available at https://youtu.be/ZqbjLZptbeE.

KEYWORDS
Invariant Generation and Checking, LSP, VSCode Extension, IDE
ACM Reference Format:
Stefania Piciorea and ThanhVu Nguyen. 2022. Bringing Invariant Analysis
to modern IDEs: The DIG+ Extension for VS Code. In . ACM, New York, NY,
USA, 4 pages. https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION
Program invariants are properties that always hold at specific pro-
gram locations, such as pre- and post-conditions, loop invariants,
and assertions. Invariants are frequently used in formal verification
(e.g., loop invariants in Hoare logic), and program synthesis, but
have also been found to be useful in many other programming
tasks, such as documentation, testing, debugging, code generation,
and synthesis [1, 3, 4].

Invariants can be discovered or inferred using dynamic or static
analyses. A static analysis can reason about all program paths
Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
Conference’17, July 2017, Washington, DC, USA
© 2022 ACM.
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM
https://doi.org/10.1145/nnnnnnn.nnnnnnn

soundly, but doing so is often expensive and is only possible for
relatively simple forms of invariants. Dynamic analyses limit their
attention to only some of a program’s paths, and as a result can
often be more efficient and produce more expressive invariants, but
provide no guarantee that those invariants are correct.

In recent years, several systems have started to take a hybrid ap-
proach that uses dynamic analysis to infer candidate invariants and
a static verifier to confirm their validity. For example, the DIG [4]
approach targets rich numerical invariants by integrating dynamic
inference and symbolic checking. Dynamic inference allows DIG to
efficiently discover many useful and rich classes of invariants from
program traces, while symbolic and static checking helps remove
and refine spurious results. The DIG approach has been used to sup-
port a wide range of application domains, e.g., program termination,
heap analysis, program rewriting and transformation, complexity
reasoning, configuration analysis, and algebraic specifications.

Despite fruitful and abundant research on invariant discovery,
DIG and existing techniques and tools are not widely used in prac-
tice, e.g., in industry, research labs, or even in classrooms for teach-
ing. One of the main reason is that research and prototype tools
are created mainly to demonstrate technical research ideas, thus
invariant generation and program analysis tools are developed as
command line utilities and can be difficult to setup, use, and un-
derstand. Moreover, they are often not accessible to engineers who
may not be familiar with research tools or may not have the time
to learn them.

To bridge the gap between research and practice in invariant
research, we have developed DIG+, an extension that leverages
Language Server Protocol technology to integrate the capabilities
of the DIG invariant generator and the CIVL symbolic execution
tool into the VS Code IDE (Integrated Development Environment).
Specifically, DIG+ has quick and useful automated assertion gen-
eration features that one would expect from a modern IDE e.g.,
user selects a location and DIG+ automatically infers invariants as
assertions at that location. Moreover, DIG+ exploits LSP client and
server interaction design to send information between the backend
DIG and CIVL tools and the user through the VSCode editor (e.g.,
changing invariant types or symbolic execution depths, checking
and removing spurious results). The goal of DIG+ is to provide a
user-friendly interface for developers to generate and test invari-
ants directly within a modern IDE, streamlining the process of
invariant inference and checking.

Another goal of DIG+ is to provide researchers with an easy way
to make their research more visible and accessible to users who are
familiar with IDEs but not with command-line based research tools.
Researchers can adapt their static or dynamic analysis tools to work
within the Language Server Protocol (LSP), enabling these tools to
provide services (like error checking and code completion) directly
within IDEs. For example, in addition to creating a command-line

1

https://github.com/dynaroars/dig/tree/dig-vscode
https://github.com/dynaroars/dig/tree/dig-vscode
https://youtu.be/ZqbjLZptbeE
https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

Conference’17, July 2017, Washington, DC, USA Stefania Piciorea and ThanhVu Nguyen

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

fault localization or program repair tool, the developers can also
create an LSP connecting the tool with the IDE to allow users to
repair code directly through any code editor that supports LSP.
Given the popularity of IDEs such as VSCode and their powerful
extension ecosystem, we believe this will make research tools more
attractive to end users, who are often excited to try new extensions
that are easy to install and use.

Targeted Users. We target industrial developers interested in dis-
covering program specifications and invariants for documentation
and debugging purpopses. We also aim to introduce formal methods
and invariant generation to students and software developers in
program analysis courses hoping to inspire them to leverage and
contribute to DIG+.

Availability. DIG+ has been developed as a VS Code extension
and can be downloaded fromGitHub athttps://github.com/dynaroars/
dig/tree/dig-vscode. A video demonstrating DIG+ is available at
https://youtu.be/ZqbjLZptbeE.

2 BACKGROUND
2.1 Invariant Generation and Checking Tools

Program Source
(C, Java, Java

bytecode)

Symbolic States
(CIVL, SPF)

Inference
Nonlinear Eqts
q*y + r = x

r^2 + 3*x = 19
Ieqs

x*y <= z
3 <= y

Max/Min
max(x,y) <= z - 4

min(z,0) <= w

Postprocessing
(simplification,

removing
redundancy

Invariants

Instrumentation
(CIL, ASM)

Fig. 1: DIG Invariant Generation

DIG. Fig. 1 gives an overview of the dynamic invariant gener-
ation tool DIG [4]. DIG finds invariants by iterating between (i)
dynamic analysis, which infers candidate invariants from program
execution traces obtained by running the program from sample
inputs, and (ii) symbolic checking, which checks candidates against
the program using a symbolic execution tool. Reporting too many
invariants, even if they are all valid, would be a burden to the user.
Thus, DIG uses a post-processing step to reduce the number of re-
ported invariants (e.g., using SMT checking to eliminate weaker or
implied invariants).

The DIG inference approach has been used to analyze many
important classes of invariants, e.g., nonlinear numerical relations,
array and heap properties, termination and temporal properties,
and interactions among configuration options.

CIVL. CIVL [5] is a formal verification tool that checks the cor-
rectness of programs using symbolic execution to explore program
states. If the tested assertion fails in any state, the asserted prop-
erty is invalid. For complex programs, symbolic execution cannot
explore all possible states but can still be highly effective in finding
bugs, e.g., computing an input that causes the program to violate
an asserted property. DIG and DIG+ both use CIVL to find such
counterexample inputs to determine spurious invariants and invalid
assertions.

Fig. 2: CIVL command-line output

While both tools are powerful, they might not be accessible to
developers who are not familiar with program analysis techniques.
Running DIG from the command line requires a certain level of
technical knowledge, as users must navigate through a series of
manual setup steps, including cloning the DIG repository and build-
ing the system. Additionally, the terminal output from DIG is often
verbose and complex, making it challenging for users to interpret
the results accurately. Similarly, for CIVL, the user would need
to write specific CIVL code and commands and invoke the CIVL
command line tool (which itself requires the Java JDK and an SMT
solver). Moreover, as shown in Fig. 2, the result of CIVL can be
difficult to interpret and misguiding, e.g., the failed assertion is not
on line 29 of the original input file. These limtiation motivate the
development of DIG+ for a more streamlined and user-friendly
experience of using DIG and CIVL.

2.2 Language Server Protocol (LSP)
LSP is a standard protocol that allows development tools (text
editors such as Emacs and VIM and IDEs such as VSCode and
Eclipse) to communicate with language servers (or in this case,
program analysis tools). DIG+ uses LSP and consists four main
components shown in Fig. 3.

Language
Client

Language
Server

Backend
ToolsEditor

VS Code
Extension Host

Fig. 3: Overview of DIG+

1○ The editor provides a graphical user interface (GUI) for
the user. It hosts features such as syntax highlighting, auto-
complete and menu popups. It interfaces with the language
client (2○) through its API to display information such as
inferred invariants or validation/error messages from the
DIG and CIVL backends.

2○ The language client interacts with the editor and the lan-
guage server by sending and receiving information, e.g.,
getting the content of an opened file, text/cursor position,
invariant results or error messages. Whenever the client is

2

https://github.com/dynaroars/dig/tree/dig-vscode
https://github.com/dynaroars/dig/tree/dig-vscode
https://youtu.be/ZqbjLZptbeE

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

Bringing Invariant Analysis to modern IDEs:
The DIG+ Extension for VS Code Conference’17, July 2017, Washington, DC, USA

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

Fig. 4: Pop-up Menu for Invariant Generation

activated, it creates a language server to which data is sent
to.

3○ The language server is a proxy to our backend tools.When
a request from the client is received, the server retrieves
the source code and sends it to DIG and CIVL for analysis.
The analysis results are composed into the LSP response
format and returned to the client through the editor.

4○ DIG+’s backend consists of the DIG invariant generation
and CIVL symbolic execution tools. DIG infers candidate in-
variants and CIVL checks the inferred (or user-supplied) in-
variants. Both tools are integrated into the language server
and communicate with the client through it (e.g., sending
results and error feedback).

Implementation. DIG+ is implemented in TypeScript, the default
language for VSCode extensions. DIG+ uses a script to install and
setup DIG and CIVL on a Linux environment using Docker, en-
suring the tools are running on a consistent and isolated Linux
Docker instance (i.e. DIG+ can run on Windows, Mac, or Linux).
DIG+ consists of separate scripts that facilitate the interaction be-
tween the backend, language clients and servers, and the frontend
editor. Other scripts preprocess C files into formats accepted by the
backend tools and handle specific operations. When beneficial to
performance, we leverage multiprocessing and run tasks in parallel.
For example, DIG+ runs multiple instances of CIVL to check invari-
ants, which allows for comprehensive feedback on all assertions in
a single run, contrasting with the traditional command-line method
where CIVL stops at the first invalid assertion, requiring manual
intervention to proceed further.

3 USING DIG+
To improve the usability and adoption of invariant analysis, DIG+
provides a user-friendly interface to generate (discover) and test
invariants.

3.1 Invariant Generation
DIG+ enhances the development experience in VSCode by enabling
the automatic inference of invariants directly on a working C file.
The user initiates the inference process by calling a special method

Fig. 5: Generated Invariants as Assertions

Fig. 6: Checking Invariants with CIVL

vtrace() at desired locations, and selects the Insert Assertion
option from a pop-up menu as shown in Fig. 4.

This action triggers the language client to send the code to the
language server, which then invokes DIG to infer invariants at
the vtrace-marked locations. After DIG generates invariants, the
process is reversed, and the language server sends these results
to the language client, which then inserts them into the C file as
assertions as shown in Fig. 5. The user can use these assertions to
increase their confidence in the correctness of their code.

DIG+ also gives various visual cues to the user during the pro-
cess. For example, a progress bar is displayed to indicate that the
inference process of DIG is running. This feature is particularly
important for longer operations, as it helps users understand that
the delay is normal and not indicative of a failure or crash. Note that
if DIG+ encounters issues, such as a failure to generate invariants,
users are promptly notified through the IDE’s notification system.

3.2 Invariant Checking
DIG+ uses CIVL to check invariants or assertions. This is important
to confirm the validity of dynamically inferred or manually inserted
invariants, e.g., introduced by the user or through external tools
such as GitHub Copilot which is readily integrated with VSCode.

Feedback from CIVL is integrated into the IDE, offering develop-
ers real-time insights into the outcomes. When CIVL successfully
checks an assertion, DIG+ automatically annotates these lines with

3

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

Conference’17, July 2017, Washington, DC, USA Stefania Piciorea and ThanhVu Nguyen

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

Fig. 7: QuickPick UI for customizing DIG

a comment stating “//valid” to indicate their validity. Conversely,
if CIVL finds a violation, DIG+ displays a notification detailing
the location and assertion that is not valid. The notification also
prompts the user with options to remove the incorrect assertion as
shown in Fig. 6. Moreover, DIG+ allows checking single or multiple
assertions simultaneously, offering flexibility for bulk checking and
reducing the need for manual intervention.

3.3 Customizations
Command line tools such as DIG often require users to specify vari-
ous flags to customize the invariant generation process. These flags
can be challenging to remember and use, especially for developers
who are not familiar with the tool.

To address this issue,DIG+ provides a user-friendly interface that
allows developers to customize the behavior of the DIG command
through an intuitive VSCode-built in QuickPick UI. This interface
presents a list of flags that users can select to fine-tune the invariant
generation process. Each flag is documented within the QuickPick
UI, providing clear descriptions and, when necessary, prompting
for additional input. This enables developers to tailor the invariant
generation process to better align with their project requirements,
ensuring that the generated assertions are relevant and useful. Fig. 7
shows the QuickPick UI for customizing DIG.

4 RELATEDWORK
Well-known related invariant tools include Daikon [1] and Infer [2].
Daikon is a pure dynamic invariant detection tool that infers prop-
erties from program executions. Facebook Infer performs interpro-
cedural static analysis to compute abstraction (a form of invariants)
to identify bugs in Java, C, and Objective-C code. Despite their
capabilities, both are command-line interface tools similarly to DIG
and thus are limited in accessibility and adoption among developers
who prefer modern integrated development environments (IDEs).
In contrast, commercialized products such as SonarQube [6] and

Coverity [7] offer comprehensive GUI systems that enhance usabil-
ity. SonarQube provides continuous code quality inspection with
a focus on detecting bugs, vulnerabilities, and code smells, sup-
porting multiple languages and integrating with CI/CD pipelines.
Coverity specializes in finding security and reliability defects, offer-
ing a web-based dashboard and IDE integration. However, neither
system focuses on LSP or invariant analysis.

To address these limitations, DIG+ automates setup tasks and
provides an intuitive interface, allowing users to generate and check
invariants directly within their IDE. This LSP-based integration
ensures that DIG+ can be used with any editor or IDE supporting
LSP, such as Emacs, Vim, and VSCode, significantly enhancing its
accessibility and practical usability for developers and researchers.

Finally, modern AI/LLM-based technologies such as Github Copi-
lot have the ability to suggest interesting invariants and assertions
directly in the IDE. However, these suggestions are not always reli-
able and may require manual verification. DIG+ provides a stream-
lined process for checking these suggestions, ensuring the validity
of these ML-generate invariants.

5 CONCLUSION
We presented DIG+, an LSP that extends modern IDEs to support
invariant generation and analysis. The current implementation
of DIG+ uses the DIG invariant generation and CIVL symbolic
execution tools and integrates them into the Visual Studio Code IDE.
DIG+ automates the setup, execution, and usage of DIG and CIVL,
reducing the need for command-line interactions and allowing non-
experts to easily leverage these tools. We hope that DIG+ will make
invariant generation and analysismore accessible to developers, and
that DIG+ will inspire researchers to develop similar user-friendly
IDE integration for other program analysis tools.

REFERENCES
[1] Michael D Ernst, Jeff H Perkins, Philip J Guo, Stephen McCamant, Carlos Pacheco,

Matthew S Tschantz, and Chen Xiao. 2007. The Daikon system for dynamic
detection of likely invariants. Science of computer programming 69, 1-3 (2007),
35–45.

[2] Meta Platforms, Inc. 2024. Infer. https://fbinfer.com/. Accessed: February 12,
2025.

[3] ThanhVu Nguyen, Deepak Kapur, Westley Weimer, and Stephanie Forrest. 2012.
Using Dynamic Analysis to Discover Polynomial and Array Invariants. In Inter-
national Conference on Software Engineering. IEEE, 683–693.

[4] Thanhvu Nguyen, KimHao Nguyen, and Matthew Dwyer. 2021. Using Symbolic
States to Infer Numerical Invariants. Transactions on Software Engineering (TSE)
(2021).

[5] Stephen F Siegel, Manchun Zheng, Ziqing Luo, Timothy K Zirkel, Andre V Mari-
aniello, John G Edenhofner, Matthew B Dwyer, and Michael S Rogers. 2015. CIVL:
the concurrency intermediate verification language. In International Conference
for High Performance Computing, Networking, Storage and Analysis. IEEE, 1–12.

[6] SonarSource. 2024. SonarQube. https://www.sonarqube.org/. Accessed: 2024-06-
26.

[7] Synopsys, Inc. 2024. Coverity. https://www.synopsys.com/software-integrity/
security-testing/static-analysis-sast.html. Accessed: 2024-06-26.

4

https://fbinfer.com/
https://www.sonarqube.org/
https://www.synopsys.com/software-integrity/security-testing/static-analysis-sast.html
https://www.synopsys.com/software-integrity/security-testing/static-analysis-sast.html

	Abstract
	1 Introduction
	2 Background
	2.1 Invariant Generation and Checking Tools
	2.2 Language Server Protocol (LSP)

	3 Using DIG+
	3.1 Invariant Generation
	3.2 Invariant Checking
	3.3 Customizations

	4 Related Work
	5 Conclusion
	References

