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ABSTRACT
Graph Neural Networks (GNNs) have recently emerged as an effec-
tive framework for representing and analyzing graph-structured
data. GNNs have been applied to many real-world problems such
as knowledge graph analysis, social networks recommendation,
and even COVID-19 detection and vaccine development. However,
unlike other deep neural networks such as Feedforward Neural Net-
works (FFNNs), few verification and property inference techniques
exist for GNNs. This is potentially due to dynamic behaviors of
GNNs, which can take arbitrary graphs as input, whereas FFNNs
which only take fixed size numerical vectors as inputs.

This paper proposes GNN-Infer, an approach to analyze and
infer properties of GNNs by extracting influential structures of the
GNNs and then converting them into FFNNs. This allows us to
leverage existing powerful FFNNs analyses to obtain results for the
original GNNs. We discuss various designs of GNN-Infer to ensure
the scalability and accuracy of the conversions. We also illustrate
GNN-Infer on a study case of node classification. We believe that
GNN-Infer opens new research directions for understanding and
analyzing GNNs.
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1 INTRODUCTION
Deep Neural Networks (DNNs) have emerged as one of the most
effective and modern approaches in solving real-world problems.
DNNs have been used to solve common problems such as movies
recommendations, image recognition to important problems such as
airplane collision control and "fake" news and information detection.
Just like software, DNN models can be misused and attacked (e.g.,
small perturbations to the inputs can result in misclassification [13,
18, 26]). Thus, over the last decade, researchers have developed
property inference [6], formal [9, 10] and robustness [4] verification
techniques to analyze DNNs, e.g., verifying that for a specific input
region, a DNN will result in a specific classification, and more
recently, inferring properties or facts [6] to help explain behaviors
of a DNN, which is typically treated as a blackbox.

Despite the proliferation of DNNs analyses, most effective ones
focus on certain types of DNNs, such as Feed-forward Neural Net-
work (FFNNs) [9], which have fixed structure and fixed-size vectors
of numbers as inputs. One of the more complicated DNNs that has
recently been used in practice is Graph Neural Networks (GNNs).
GNNs take inputs as graphs of various sizes (even each of the nodes
in the graph is attached with information encoded as a vector of
numbers) and have dynamic computations (i.e., dynamic compu-
tation graphs) depending on the structure and information from
the input graphs. GNNs have been applied to solve many practical
problems, e.g., knowledge graphs analysis [15], recommendation
system for social networks [19], chemical and protein classifica-
tion [5, 12], reasoning the structure of graphics and images [16],
and even advanced COVID-19 detection [14, 24] and vaccine devel-
opment [2, 7, 22].

Similar to standard DNNs, complex GNNs are often used as a
blackbox and can be vulnerable to adversary attacks, hightlighting
the concerns about safety, fairness, and privacy of the GNNs [3, 17,
23]. For example, a new COVID vaccine developed by unknown
and attacked-prone ML techniques can only further increase doubts
and hesitancy from the public. However, unlike popular FFNNs, in
which there are many effective formal analyses, to the best of our
knowledge, few techniques exist for GNNs, potentially due to the
vast differences between the two types of networks.

In this paper, we propose GNN-Infer, an approach to analyze
GNNs, both in verification and property inference, by converting
GNNs to FFNNs and reusing developed techniques for FFNNs.While
analyses explicitly designed for GNNs can be more efficient, they
can also be more difficult and time-consuming to develop due to
the differences between two types of networks. Thus, we believe
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Figure 1: Overview of GNN-Infer

our approach of leveraging existing efficient techniques and tools
can be achieved quicker and also as effective (e.g., by using existing
powerful FFNN tools). Indeed, the GNN-Infer approach is similar
to techniques in software engineering and formal verification that
encode the analysis task as a logical formula that can be efficiently
analyzed by existing constraint solving techniques and tools (e.g.,
SAT and SMT solvers).

Fig. 1 gives an overview of GNN-Infer. The main challenge in
analyzing GNNs and converting them to FFNNs is that the input
graphs of a GNN can have various topological structures and the
GNN itself also has a dynamic computation graph depending on its
input graphs. To solve this challenge, we first mine influential sub-
structures of input graphs to summarize the structural input space
of a GNN. Then for each substructure, which represents a class of
input graphs, we “unroll” the structure to create an equivalent FFNN
for each update operation of the GNN, and then combine these
FFNNs into a final FFNN representing the original GNN operating
over input graphs captured by the substructure. Finally, we extend
the existing DNN analyses to the FFNN of each substructure and
obtain results for the original GNN.

2 TECHNICAL APPROACH
Existing verification techniques for DNNs check that the DNN sat-
isfies a user-supplied property (e.g., a certain range over inputs
results in a certain output). In contrast, a property inference tech-
nique aims to automatically infer such properties from the DNN.

Figure 2: GNN message passing and unrolling

In both cases, the property to be verified or inferred has the form
pre =⇒ post, where pre is a condition over the inputs and post
is certain requirement on the outputs. GNN-Infer aims to verify
and infer the pre condition for some specific post condition, e.g.,
we want to find input condition that causing the nerual network to
classify input images as "dog".

To illustrate GNN-Infer, we consider GNN models for the stan-
dard problem of graph node classification, which takes as input a
graph 𝐺 and gives a classification 𝑐 for each node 𝑣 ∈ 𝐺 . For such
GNNs, the pre are input properties, which are logical predicates
capturing common structures and features1 of the input graphs
that lead to a certain classification of a target node. Below we use a
concrete example given in Fig. 2 to describe GNN-Infer.

2.1 Substructure Mining
Unlike an FFNN, a GNN does not have a fixed structure: it can
take arbitrary graphs and the behavior of GNN itself also changes
depending on the structure of the inputs (e.g., the influence of a
node depends on its neighbors). Thus, the direct, naïve way of
converting a GNN to an FFNN does not scale as it would result in a
different FFNN for each different input graph, and the FFNN can
also be large if the input graph is large.

To solve this challenge, GNN-Infer creates FFNNs that support
classes of input graphs. We leverage existing works in network
graphs and GNNs such as GNNExplainer and PGExplainer [11,
20] to mine common and influential substructures from sample
input graphs. These substructures are subgraphs that contain nodes,
edges, and features that likely affect the outcome of target nodes’
predictions. Importantly, these substructures are compact, which
are crucial for achieving FFNNs with manageable sizes.

Fig. 1 illustrates how GNN-Infer mines influential substructures
(sub-structure miner). Given a trained GNN model and a set of in-
put graphs that have the desired classification, we use an existing

1Node features are attributes of nodes, e.g., if we take a node "professor" in academic
graph, its attributes may be "name", "citations", "affiliation", and encoded as a numerical
vector such as {0.1, 0.3, 0.4, 0.5}.



Toward the Analysis of Graph Neural Networks ICSE-NIER’22, May 21–29, 2022, Pittsburgh, PA, USA

tool such as GNNExplainer to extract influential substructures. For
example, from the two input graphs 𝐺1 and 𝐺2 in Fig. 1, GNNEx-
plainer would extract three substructures𝐺𝑠𝑢𝑏1,𝐺𝑠𝑢𝑏2,𝐺𝑠𝑢𝑏3 that
are common from the input graphs and contribute significantly in
the prediction of the target red-color node.

GNN-Infer thus focuses on analyzing GNNs over input graphs in
existing training samples. The higher quality the samples we have,
the better set of influential substructures we learn—this leads to
larger and more accurate classes of supported graphs. Just as with
most DNNs, sources of obtaining training samples vary, e.g., public
benchmarks. If available, we can also reuse input graphs that were
used to train the GNN models we are analyzing.

2.2 Structure Predicates and Graph
Isomorphism

Many existing DNNs and program analyses encode problems into
logical formulae that can be reasoned about using constraint solv-
ing. Here, we encode the obtained graph substructures as logical
predicates 𝜎𝑠𝑡𝑟𝑢𝑐𝑡 , so that we can leverage existing automating
reasoning tools such as SAT and SMT solvers. An important use
for these structure predicates is to check if an input graph contains
the considered substructures. If it does, we are confident that our
approach and result will hold; and if it does not, we can support it
by adding it to our training data to learn about its influential sub-
structures. These predicates are also a crucial part of the inferred
properties that help explain the behaviors of the GNN to the user.

To determine if an input graph satisfies a substructure, we check
if the graph and the substructure, which is also a graph, is iso-
morphic. By adapting existing work such as CFL-match [1], we
can apply logical reasoning over the obtained structure predicates
to check if there exist a mapping from the querying substructure
graph to some subgraph of input graph that would make both
graphs isomorphic.

Fig. 1 shows these steps. For each obtained substructure, we
create a predicate capturing that structure by using standard graph
isomorphic checking. As an example structure predicate ensuring
present of 𝐺𝑠𝑢𝑏1 which has three nodes 𝑥0 (green), 𝑥1 (blue) and 𝑦
(red) to be matched to input graph𝐺 = (𝑉 , 𝐸) where 𝑉 is the set of
nodes and 𝐸 is the set of edges, can has the following form (note
that we have omitted node-label checking for readability):

𝜎𝑠𝑡𝑟𝑢𝑐𝑡,𝑠𝑢𝑏1 (𝑉 , 𝐸) = ∃𝑥0, 𝑥1, 𝑦 ∈ 𝑉 :
{(𝑥0, 𝑥1), (𝑥0, 𝑥1), (𝑥0, 𝑦)} ⊆ 𝐸

(1)

Concerning the implementation side, this can be done with ex-
isting analysis tools by transforming from a graph problem to a
satisfiability problem (e.g., nodes represented as boolean variables
and edges as logical connections among variables). Notice if we
perform graph isomorphism checking on some input graph such as
𝐺1 in the Figure 1, we will see that it is isomorphic to the predicate
of substructure 𝐺𝑠𝑢𝑏1 because they share the same substructure.

Obviously, all trained input sets would be isomorphic to at least
one of the structure predicates.

2.3 GNN Unrolling
After obtaining influential substructures and their corresponding
substructural predicates, we can now create an FFNN to represent

the GNN model. As it turns out, it is actually straightforward to
convert a GNN with a fixed substructure directly to an FFNN. We
assume our GNN uses the the popular message passing process[5]
adopted in most types of GNNs. This process works by updating
the value of a node in the graph based on the information of its
neighboring nodes. Then, to create an FFNN from a GNN with
a set of substructures, we essentially create a FFNN to simulate
how message passing is done on a substructure using the “unroll”
technique similar to one introduced in [8] for RNN unrolling. Fi-
nally, we combine all FFNNs to obtain a final FFNN representing
the original GNN (that supports graph inputs isomorphic to the
considered substructures).

Figure 2 shows how message passing works on the substructure
𝐺𝑠𝑢𝑏1 obtained in Fig. 1. Again, 𝐺𝑠𝑢𝑏1 consists of 3 nodes 𝑥0, 𝑥1
and 𝑦, for illustration purposes, we use a GNN with 2-layer and
the weight𝑊 to represent the values of features of each node. For
layer 1, the GNN contains three message passing processes labelled
(1), (2), (3) that correspond to the three nodes 𝑦, 𝑥1 , and 𝑥0. The
results of these message passing processes are updated as newly
computed node features of 𝑦, 𝑥1 and 𝑥0, which are used for next
layer. For final layer 2, we only need to consider target node 𝑦’s
message passing from the result of (1), (2) (3), followed by a simple
linear transformation and we have a message processing process
labeled (4) in Figure 2.

Now, we unroll each message passing process in layer 𝑖 of the
GNN into a corresponding 𝑖-layer FFNN. For the three message-
passing processes in Layer 1 in Figure 2a, we obtain the three 1-layer
FFNNs shown in Figure 2b and for the message passing process in
layer 2 in Figure 2a, we have the 2-layer FFNN shown in Figure 2b
(4). Finally, we connect these individual FFNNs to construct a final
(large) FFNN as shown in Figure 2b to represent the original GNN.

Using Existing FFNN analyses. We can apply existing analyses
for FFNNs to our rolled out FFNN. For instance, we can apply the
Prophecy tool [6] to infer properties for FFNNs. This work derives
predicates over the inputs of an FFNN, which convex regions over
inputs values, that map to a desired output classification. We can
also apply FFNN verification tools such as Marabou (the successor
of the popular Reluplex work [9]) to check if an inferred or user-
supplied property is correct.

For the running example in Figure 2, given some specific weights
in Figure 2a, running Prophecy on the resulting FFNN can gives the
following predicates representing a convex region over the inputs
space that result in the desired classification of the target node in
the GNN. Here the input 𝑥𝑖, 𝑗 of the FFNN represents the feature 𝑗

of node 𝑥𝑖 of the GNN.
𝜎𝑖𝑛𝑝𝑠 = (𝑥0,0 + 𝑥1,0 − 𝑥0,1 − 𝑥1,1 > 0)

∧(𝑥0,0 + 𝑥1,0 − 2𝑥0,1 − 2𝑥1,1 ≤ 0)
∧(𝑥0,0 − 𝑥0,1 > 0) ∧ (𝑥0,0 − 2𝑥0,1 > 0)
∧(𝑥0,0 + 𝑥1,0 + 𝑥2,0 − 𝑥0,1 − 𝑥1,1 − 𝑥2,1 > 0)
∧(𝑥0,1 + 𝑥1,1 + 𝑥2,1 − 2𝑥0,0 − 2𝑥1,0 − 2𝑥2,0 ≤ 0)

(2)

2.4 Equivalent Analysis
Ideally, the mined influential substructures truly represent the be-
haviors of the considered GNN and the obtained FFNN is thus
equivalent to the GNN. In practice, this does not happen as many
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Figure 3: Example of using decision tree to predict whether
substructure computation will be equivalent to the input
graphs

nodes, especially those that are not part of the influential substruc-
tures but are neighbors with those in the substructure, can influence
the final GNN classification result. Thus, we want to analyze how
these neighboring nodes can directly affect those in the influential
substructures and thus the final result.

Our experiences with GNNs show that a node in a influential sub-
structure is affected by their "outside" neighbors (those that are not
in the substructures) in two ways: the number of outside neighbors
it has comparing to its total number of neighbors (connectivity
ratio) and the mean contribution of the outside neighbors.

Given this knowledge, we compute additional conditions over
substructures to make them represent the GNN more accurately. To
do this, we use decision trees to compute predicates over the two
features representing connectivity and mean contribution. We split
the input graphs (e.g., used in the beginning to obtain substructures)
into those that are and are not isomorphic to the substructures.With
respect to each influential substructure, we collect the supporting
input graph set from the training dataset. Following this, for each
input in the supporting graph set, we perform two predictions of
target node𝑦’s output: 1) using only the influential substructure and
2) using the full input graph. We collect statistics on connectivity
ratio and mean contribution to predict whether the output on
target node 𝑦 remains the same throughout two scenario.

Using this set of training data, we can leverage decision tree
to determine conditions over the two features representing con-
nectivity ratio and mean contribution that lead to equivalent or
non-equivalent classification. Each paths in the tree represents an
additional predicate that can help strengthen the substructures,
allowing them to represent the GNN more accurately.

For example, the decision tree in Fig. 3 produces several predi-
cates such as

𝜎feat_equiv := 𝑐0 > 0.2 ∧ 𝑐1 ≤ 0.5 ∧ 𝑥𝑜1,0 < 0.2 (3)

which says that node 0 with connectivity ratio > 0.2 , node 1 with
connectivity ratio <= 0.5, and the mean contribution of feature 0
in node 0 ≥ 0.2 are likely needed as conjunction for the feature
predicate on the substructure holds for all graphs. Thus, this ap-
proach allows us to obtain a set 𝜎𝑖𝑛𝑝𝑠 of predicates to strengthen
the substructure predicates, ensuring they represent the GNN more
accurately.

2.5 GNN Property
Finally, our approach produces a property 𝜎 of a given GNN in form

𝜎𝑠𝑡𝑟𝑢𝑐𝑡𝜎 ∧ 𝜎𝑖𝑛𝑝𝑠 ∧ 𝜎𝑓 𝑒𝑎𝑡_𝑒𝑞𝑢𝑖𝑣 =⇒ 𝑄,

where 𝜎𝑠𝑡𝑟𝑢𝑐𝑡 is the predicate capturing graph isomorphism (Sec-
tion 2.2), 𝜎𝑖𝑛𝑝 are input properties of the converted FFNN (Sec-
tion 2.3), 𝜎𝑓 𝑒𝑎𝑡_𝑒𝑞𝑢𝑖𝑣 is the additional constraints helping the FFNN
more accurate to the original GNN (Section 2.4), and Q is the output
property of some target node 𝑦 (e.g. 𝑜𝑦,1 < 𝑜𝑦,2). This means for an
an input graph with target node 𝑦 that is isomorphic to some of
the mined substructure (satisfies 𝜎𝑠𝑡𝑟𝑢𝑐𝑡 ), has certain requirements
about neighboring substructure nodes (satisfies 𝜎𝑓 𝑒𝑎𝑡_𝑒𝑞𝑢𝑖𝑣 ), with
node features lie within certain regions (satisfies 𝜎𝑖𝑛𝑝𝑠 ), then this
graph will have the property 𝑄 on its target node.

3 FUTURE PLAN
Currently, we only have applied our ideas on several small exam-
ples by hand. We are implementing these ideas and evaluate the
approach with existing GNN benchmarks.

We anticipate several challenges that would arise in this direc-
tion. First, for complex GNNs, the converted FFNNs might be too
too large and contain non-trivial, e.g., nonlinear-arithmetic. These
would give difficulties to standard FFNN verification tools such as
Reluplex or Marabou. Second, we use sample inputs to mine sub-
structures and feature predicates, and thus can obtain inaccurate
results. While we might be able to obtain groundtruths or manually
check results of small GNNs, we will not have an effective way to
formally verify our results on complex and real-world GNNs. Third,
obtaining realistic benchmarks for GNNs might be more difficult as
they are not as readily available and well-studied as benchmarks of
FFNNs. However, we can start with existing dataset from the litera-
ture such as those from [16] for autnomous driving and [5, 25] for
drug interactions. Moreover, we plan to use GNN-Infer’s inferred
properties to analyze adversarial attacks and thus can compare
our work with existing work on GNN adversarial attacks (e.g. Net-
tack, GNN Meta Attack [26–28]) and adversarial defense such as
GNNGuard [21].

Finally, there is always a chance that the proposed approach
does not work well in practice, e.g., GNN-Infer does not scale or
becomes too inaccurate for converting complex GNNs. It might be
that designing algorithms directly to solve GNNs would give more
benefits in the long run. However, as with any research problems,
especially new ones with few existing attempts, we have to start
somewhere, and converting it to something we already know how
to solve seems to be a good place to start.
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