
Connecting Program Synthesis and Reachability:
Automatic Program Repair using Test-Input Generation

ThanhVu Nguyen1, Westley Weimer2, Deepak Kapur3, and Stephanie Forrest3

1 University of Nebraska, Lincoln NE, USA, tnguyen@cse.unl.edu
2 University of Virginia, Charlottesville VA, USA, weimer@virginia.edu

3 University of New Mexico, Albuquerque NM, USA, {kapur,forrest}@cs.unm.edu

Abstract. We prove that certain formulations of program synthesis and
reachability are equivalent. Specifically, our constructive proof shows the
reductions between the template-based synthesis problem, which gener-
ates a program in a pre-specified form, and the reachability problem,
which decides the reachability of a program location. This establishes a
link between the two research fields and allows for the transfer of tech-
niques and results between them.
To demonstrate the equivalence, we develop a program repair prototype
using reachability tools. We transform a buggy program and its required
specification into a specific program containing a location reachable only
when the original program can be repaired, and then apply an off-the-
shelf test-input generation tool on the transformed program to find test
values to reach the desired location. Those test values correspond to
repairs for the original program. Preliminary results suggest that our
approach compares favorably to other repair methods.

Keywords: program synthesis; program verification; program reacha-
bility; reduction proof; automated program repair; test-input generation;

1 Introduction

Synthesis is the task of generating a program that meets a required specification.
Verification is the task of validating program correctness with respect to a given
specification. Both are long-standing problems in computer science, although
there has been extensive work on program verification and comparatively less on
program synthesis until recently. Over the past several years, certain verification
techniques have been adopted to create programs, e.g., applying symbolic execu-
tion to synthesize program repairs [27, 28, 31, 33], suggesting the possibility that
these two problems may be “two sides of the same coin”. Finding and formalizing
this equivalence is valuable in both theory and practice: it allows comparisons
between the complexities and underlying structures of the two problems, and
it raises the possibility of additional cross-fertilization between two fields that
are usually treated separately (e.g., it might enable approximations designed to
solve one problem to be applied directly to the other).

This paper establishes a formal connection between certain formulations of
program synthesis and verification. We focus on the template-based synthesis

2

problem, which generates missing code for partially completed programs, and
we view verification as a reachability problem, which checks if a program can
reach an undesirable state. We then prove constructively that template-based
synthesis and reachability are equivalent. We reduce a template-based synthe-
sis problem, which consists of a program with parameterized templates to be
synthesized and a test suite specification, to a program consisting of a specific
location that is reachable only when those templates can be instantiated such
that the program meets the given specification. To reduce reachability to syn-
thesis, we transform a reachability instance consisting of a program and a given
location into a synthesis instance that can be solved only when the location
in the original problem is reachable. Thus, reachability solvers can be used to
synthesize code, and conversely, program synthesis can be applied to determine
reachability.

To demonstrate the equivalence, we use the reduction to develop a new au-
tomatic program repair technique using an existing test-input generation tool.
We view program repair as a special case of template-based synthesis in which
“patch” code is generated so that it behaves correctly. We present a prototype
tool called CETI that automatically repairs C programs that violate test-suite
specifications. Given a test suite and a program failing at least one test in that
suite, CETI first applies fault localization to obtain a list of ranked suspicious
statements from the buggy program. For each suspicious statement, CETI trans-
forms the buggy program and the information from its test suite into a program
reachability instance. The reachability instance is a new program containing a
special if branch, whose then branch is reachable only when the original pro-
gram can be repaired by modifying the considered statement. By construction,
any input value that allows the special location to be reached can map directly
to a repair template instantiation that fixes the bug. To find a repair, CETI
invokes an off-the-shelf automatic test-input generation tool on the transformed
code to find test values that can reach the special branch location. These values
correspond to changes that, when applied to the original program, cause it to
pass the given test suite. This procedure is guaranteed to be sound, but it is not
necessarily complete. That is, there may be bugs that the procedure cannot find
repairs for, but all proposed repairs are guaranteed to be correct with respect to
the given test suite. We evaluated CETI on the Tcas program [14], which has 41
seeded defects, and found that it repaired over 60%, which compares favorably
with other state-of-the-art automated bug repair approaches.

To summarize, the main contributions of the paper include:

– Equivalence Theorem: We constructively prove that the problems of template-
based program synthesis and reachability in program verification are equiva-
lent. Even though these two problems are shown to be undecidable in general,
the constructions allows heuristics solving one problem to be applied to the
other.

– Automatic Program Repair : We present a new automatic program repair
technique, which leverages the construction. The technique reduces the task
of synthesizing program repairs to a reachability problem, where the results

3

1 i n t is upward (i n t in , i n t up , i n t down){
2 i n t bias , r ;
3 i f (in)
4 b ia s = down ; // f i x : b i a s = up + 100
5 e l s e
6 b ia s = up ;
7 i f (b i a s > down)
8 r = 1 ;
9 e l s e

10 r = 0 ;
11 return r ;
12 }

Inputs Output
Test in up down expected observed Passed?

1 1 0 100 0 0
2 1 11 110 1 0 7

3 0 100 50 1 1
4 1 -20 60 1 0 7

5 0 0 10 0 0

6 0 0 -10 1 1

Fig. 1. Example buggy program and test suite. CETI suggests replacing line 4 with
the statement bias = up + 100; to repair the bug.

produced by a test-input generation tool correspond to a patch that repairs
the original program.

– Implementation and Evaluation: We implement the repair algorithm in a
prototype tool that automatically repairs C programs, and we evaluate it on
a benchmark that has been targeted by multiple program repair algorithms.

2 Motivating Example

We give a concrete example of how the reduction from template-based synthesis
to reachability can be used to repair a buggy program. Consider the buggy
code shown in Figure 1, a function excerpted from a traffic collision avoidance
system [14]. The intended behavior of the function can be precisely described as:
is upward(in,up,down) = in*100 + up > down. The table in Figure 1 gives
a test suite describing the intended behavior. The buggy program fails two of
the tests, which we propose to repair by synthesizing a patch.

We solve this synthesis problem by restricting ourselves to generating patches
under predefined templates, e.g., synthesizing expressions involving program
variables and unknown parameters, and then transforming this template-based
synthesis problem into a reachability problem instance. In this approach, a tem-
plate such as

c0 + c1 v1 + c2 v2

is a linear combination of program variables vi and unknown template parame-
ters ci . For clarity, we often denote template parameters with a box to distin-
guish them from normal program elements. This template can be instantiated to
yield concrete expressions such as 200+3v1 +4v2 via c0 = 200, c1 = 3, c2 = 4. To
repair Line 4 of Figure 1, (bias = down;) with a linear combination template,
we would replace Line 4 with:

bias = c0 + c1 *bias + c2 *in + c3 *up + c4 *down;

where bias, in, up, and down are the variables in scope at Line 4 and the value
of each ci must be found. We propose to find them by constructing a special
program reachability instance and then solving that instance.

4

i n t c0 , c1 , c2 , c3 , c4 ; // g l oba l inputs

i n t is upwardP (i n t in , i n t up , i n t
down){

i n t bias , r ;
i f (in)

b i a s =
c0+c1∗ b ia s+c2∗ in+c3∗up+c4∗down ;

e l s e
b i a s = up ;

i f (b i a s > down)
r = 1 ;

e l s e
r = 0 ;

re turn r ;
}

i n t main () {
i f (i s upwardP (1 ,0 ,100) == 0 &&

is upwardP (1 ,11 ,110) == 1 &&
is upwardP (0 ,100 ,50) == 1 &&
is upwardP (1 ,−20 ,60) == 1 &&
is upwardP (0 , 0 , 10) == 0 &&
is upwardP (0 ,0 ,−10) == 1){

[L]
}
re turn 0 ;

}

Fig. 2. The reachability problem instance derived from the buggy program and test
suite in Figure 1. Location L is reachable with values such as c0 = 100, c1 = 0, c2 =
0, c3 = 1, c4 = 0. These values suggest using the statement bias = 100 + up; at Line
4 in the buggy program.

The construction transforms the program, its test suite (Figure 1), and the
template statement into a reachability instance consisting of a program and
target location. The first key idea is to derive a new program containing the
template code with the template parameters ci represented explicitly as pro-
gram variables ci. This program defines the reachability instance, which must
assign values to each ci. The second key idea is that each test case is explicitly
represented as a conditional expression. Recall that we seek a single synthesis
solution (one set of values for ci) that respects all tests. Each test is encoded as a
conditional expression (a reachability constraint), and we take their conjunction,
being careful to refer to the same ci variables in each expression. In the example,
we must find one repair that satisfies all six tests, not six separate repairs that
each satisfy only one test.

The new program, shown in Figure 2, contains a function is upwardP that
resembles the function is upward in the original code but with Line 4 replaced
by the template statement with each reference to a template parameter replaced
by a reference to the corresponding new externally-defined program variable.
The program also contains a starting function main, which encodes the inputs
and expected outputs from the given test suite as the guards to the conditional
statement leading to the target location L. Intuitively, the reachability problem
instance asks if we can find values for each ci that allow control flow to reach
location L, which is only reachable iff all tests are satisfied.

This reachability instance can be given as input to any off-the-self test-input
generation tool. Here, we use KLEE [9] to find value for each ci. KLEE deter-
mines that the values c0 = 100, c1 = 0, c2 = 0, c3 = 1, c4 = 0 allow control flow
to reach location L. Finally, we map this solution back to the original program
repair problem by applying the ci values to the template

bias = c0 + c1 *bias + c2 *in + c3 *up + c4 *down;

generating the statement:

bias = 100 + 0*bias + 0*in + 1*up + 0*down;

5

which reduces to bias = 100 + up. Replacing the statement bias = down in
the original program with the new statement bias = 100 + up produces a pro-
gram that passes all of the test cases.

To summarize, a specific question (i.e., can the bug be repaired by applying
template X to line Y of program P while satisfying test suite T?) is reduced to a
single reachability instance, solvable using a reachability tool such as a test-input
generator. This reduction is formally established in the next section.

3 Connecting Program Synthesis and Reachability

We establish the connection between the template-based formulation of program
synthesis and the reachability problem in program verification. We first review
these problems and then show their equivalence.

3.1 Preliminaries

We consider standard imperative programs in a language like C. The base
language includes usual program constructs such as assignments, conditionals,
loops, and functions. A function takes as input a (potentially empty) tuple of
values and returns an output value. A function can call other functions, including
itself. For simplicity, we equate a program P with its finite set of functions, in-
cluding a special starting function mainP . For brevity, we write P (ci, . . . , cn) = y
to denote that evaluating the function mainP ∈ P on the input tuple (ci, . . . , cn)
results in the value y. Program or function semantics are specified by a test
suite consisting of a finite set of input/output pairs. When possible, we use ci
for concrete input values and vi for formal parameters or variable names.

To simplify the presentation, we assume that the language also supports
exceptions, admitting nonlocal control flow by raising and catching exceptions
as in modern programming languages such as C++ and Java. We discuss how
to remove this assumption in Section 3.3.

Template-based Program Synthesis. Program synthesis aims to automat-
ically generate program code to meet a required specification. The problem of
synthesizing a complete program is generally undecidable [44], so most practi-
cal synthesis techniques operate on partially-complete programs, filling in well-
structured gaps [43, 45, 41, 38, 2, 22, 1, 46]. These techniques synthesize programs
from specific grammars, forms, or templates and do not generate arbitrary code.
A synthesis template expresses the shape of program constructs, but includes
holes (sometimes called template parameters), as illustrated in the previous sec-
tion. We refer to a program containing such templates as a templated program
and extend the base language to include a finite, fixed set of template parameters
ci as shown earlier. Using the notation of contextual operational semantics, we

write P [c0, . . . , cn] to denote the result of instantiating the template program P
with template parameter values c0 . . . cn. To find values for the parameters in

6

a templated program, many techniques (e.g., [43, 45, 1, 46]) encode the program
and its specification as a logical formula (e.g., using axiomatic semantics) and
use a constraint solver such as SAT or SMT to find values for the parameters ci
that satisfy the formula. Instantiating the templates with those values produces
a complete program that adheres to the required specification.

Definition 1. Template-based Program Synthesis Problem. Given a tem-
plated program Q with a finite set of template parameters S = { c1 , . . . , cn }
and a finite test suite of input/output pairs T = {(i1, o1), . . . , (im, om)}, do there
exist parameter values ci such that ∀(i, o) ∈ T . (Q[c1, . . . , cn])(i) = o?

For example, the program in Figure 1 with Line 4 replaced by bias = c0
+ c1 *bias + c2 *in + c3 *up + c4 *down is an instance of template-based syn-

thesis. 4 This program passes its test suite given in Figure 1 using the solution
{c0 = 100, c1 = 1, c2 = 0, c3 = 1, c4 = 0}. The decision formulation of the prob-
lem asks if satisfying values c1 . . . cn exist; in this presentation we require that
witnesses be produced.

Program Reachability. Program reachability is a classic problem which asks
if a particular program state or location can be observed at run-time. It is not
decidable in general, because it can encode the halting problem (cf. Rice’s Theo-
rem [37]). However, reachability remains a popular and well-studied verification
problem in practice. In model checking [11], for example, reachability is used
to determine whether program states representing undesirable behaviors could
occur in practice. Another application area is test-input generation [10], which
aims to produce test values to explore all reachable program locations.

Definition 2. Program Reachability Problem. Given a program P , set of
program variables {x1, . . . , xn} and target location L, do there exist input values
ci such that the execution of P with xi initialized to ci reaches L in a finite
number of steps?

For example, the program in Figure 3 has a reachable location L using the
solution {x = −20, y = −40}. Similar to the synthesis problem, the decision
problem formulation of reachability merely asks if the input values c1, . . . , cn
exist; in this presentation we require witnesses be produced.

3.2 Reducing Synthesis to Reachability

We present the constructive reduction from synthesis to reachability. The key to
the reduction is a particular “gadget,” which constructs a reachability instance
that can be satisfied iff the synthesis problem can be solved.

4 We use this linear template for brevity of presentation and to show that even re-
stricted synthesis forms are as hard as the general reachability problem. More gen-
eral polynomials (e.g., nonlinear) can be handled via a priority subset of terms (e.g.,
t1 = x2, t2 = xy, as demonstrated in nonlinear invariant generation [34]).

7

// g l oba l inputs
i n t x , y ;

i n t P() {
i f (2 ∗ x == y)

i f (x > y + 10)
[L]

r e turn 0 ;
}

Fig. 3. An instance of program
reachability. Program P reaches
location L using the solution
{x = −20, y = −40}.

i n t PQ () {
i f (2∗ x == y)

i f (x > y +10)

// l o c L in P
r a i s e

REACHED;

return 0 ;
}

i n t mainQ () {
// syn the s i z e x , y
i n t x = cx ;
i n t y = cy ;
try

PQ () ;
catch (REACHED)

return 1 ;

re turn 0 ;
}

Fig. 4. Reducing the reachability example in Fig-
ure 3 to a template-based program synthesis pro-
gram (i.e., synthesize assignments to cx and cy).
The test suite of the reduced synthesis program is
Q() = 1.

Reduction: Let Q be a program with a test suite T = {(i1, o1), . . . } and tem-
plate parameters S = { c1 , . . . , cn }. We construct GadgetS2R(Q,S, T), which

returns a new program P (the constructed reachability instance) with a special
location L, as follows:

1. For every template parameter ci , add a fresh global variable vi. A solution
to this reachability instance is an assignment of concrete values ci to the
variables vi.

2. For every function q ∈ Q, define a similar function qP ∈ P . The body of
qP is the same as q, but with every reference to a template parameter ci
replaced with a reference to the corresponding new variable vi.

3. P also contains a starting function mainP that encodes the specification
information from the test suite T as a conjunctive expression e:

e =
∧

(x,y)∈T

mainQP (x) = y

where mainQP is a function in P corresponding to the starting function
mainQ in Q. In addition, the body of mainP is one conditional statement
leading to a fresh target location L if and only if e is true. Thus, mainP has
the form

i n t mainP () {
i f (e)

[L]
}

4. The derived program P consists of the declaration of the new variables (Step
1), the other functions qP ’s (Step 2), and the starting function mainP (Step
3).

Example: Figure 2 illustrates the reduction using the example from Figure 1.
The resulting reachability program can arrive at location L using the input
{c0 = 100, c1 = 0, c2 = 0, c3 = 1, c4 = 0}, which corresponds to a solution.

8

Reduction Correctness and Complexity: The correctness of GadgetS2R, which
transforms synthesis to reachability, relies on two key invariants. First, function
calls in the derived program P have the same behavior as templated functions
in the original program Q. Second, location L is reachable if and only if values
ci can be assigned to variables vi such that Q passes all of the tests. The full
correctness proof is given in Section [35].

The complexity of GadgetS2R is linear in both the program size and number
of test cases of the input instance Q,S, T . The constructed program P consists
of all functions in Q (with |S| extra variables) and a starting function mainP

with an expression encoding the test suite T .
This reduction directly leads to the main result for this direction of the

equivalence:

Theorem 1. The template-based synthesis problem in Definition 1 is reducible
to the reachability problem in Definition 2.

3.3 Reducing Reachability to Synthesis

Here, we present the reduction from reachability to synthesis. The reduction also
uses a particular gadget to construct a synthesis instance that can be solved iff
the reachability instance can be determined.

Reduction: Let P be a program, L be a locataion in P , and V = {v1, . . . , vn} be
global variables never directly assigned in P . We construct GadgetR2S(P,L, V),
which returns a templated program Q with template parameters S and a test
suite T , as follows:

1. For every variable vi, define a fresh template variable ci . Let the set of

template parameters S be the set containing each ci .
2. For every function p ∈ P , define a derived function pQ ∈ Q. Replace each

function call to p with the corresponding call to pQ. Replace each use of
a variable vi with a read from the corresponding template parameter ci ;
remove all declarations of variables vi.

3. Raise a unique exception REACHED, at the location in Q corresponding to the
location L in P . As usual, when an exception is raised, control immediately
jumps to the most recently-executed try-catch block matching that excep-
tion. The exception REACHED will be caught iff the location in Q corresponding
to L ∈ P would be reached.

4. Define a starting function mainQ that has no inputs and returns an inte-
ger value. Let mainPQ be the function in Q corresponding to the starting
function mainP in P .

– Insert try-catch construct that calls pQ and returns the value 1 if the
exception REACHED is caught.

– At the end of mainQ, return the value 0.
– Thus, mainQ has the form

9

i n t mainQ () {
try {

mainP Q () ;
} catch (REACHED) {

re turn 1 ;
}
re turn 0 ;

}

5. The derived template program Q consists of the finite set of template pa-
rameters S = { c1), . . . , cn } (Step 1), other functions pQ’s (Step 2), and

the starting function mainQ (Step 4).
6. The test suite T for Q consists of exactly one test case Q() = 1, indicating

the case when the exception REACHED is raised and caught.

Example: Figure 4 illustrates the reduction using the example from Figure 3.
The synthesized program can be satisfied by c0 = −20, c1 = −40, corresponding
to the input (x = −20, y = −40) which reaches L in Figure 3.

The exception REACHED represents a unique signal to mainQ that the location
L has been reached. Many modern languages support exceptions for handling
special events, but they are not strictly necessary for the reduction to succeed.
Other (potentially language-dependent) implementation techniques could also
be employed. Or, we could use a tuple to represent the signal, e.g., returning
(v, false) from a function that normally returns v if the location corresponding
L has not been reached and (1, true) as soon as it has. BLAST [7], a model
checker for C programs (which do not support exceptions), uses goto and labels
to indicate when a desired location has been reached.

Reduction Correctness and Complexity: The correctness of the GadgetS2R, which
transforms reachability to synthesis, also depends on two key invariants. First,
for any ci, execution in the derived templated program Q with ci 7→ ci mirrors

execution in P with vi 7→ ci up to the point when L is reached (if ever). Second,
the exception REACHED is raised in Q iff location L is reachable in P . The full
correctness proof is given in Section [35]

The complexity of GadgetR2S is also linear in the input instance P,L, vi.
The constructed program Q consists of all functions in P and a starting function
mainQ having n template variables, where n = |{vi}|.

This reduction directly leads to the main result for this direction of the
equivalence:

Theorem 2. The reachability problem in Definition 2 is reducible to the template-
based synthesis problem in Definition 1.

3.4 Synthesis ≡ Reachability

Together, the above two theorems establish the equivalence between the reach-
ability problem in program verification and the template-based formulation of
program synthesis.

10

Corollary 1. The reachability problem in Definition 2 and the template-based
synthesis problem in Definition 1 are linear-time reducible to each other.

This equivalence is rather expected as researchers have long implicitly as-
sumed certain relations between program synthesis and verification (e.g., see
Related Work in Section 5). However, we believe that a proof of the equivalence
is valuable. First, our proof is relatively straightforward and formally establishes
and shows that both problems inhabit the same complexity class (e.g., the re-
stricted formulation of synthesis in Definition 1 is as hard as the reachablility
problem in Definition 2). Second, although both problems are undecidable in
the general case, the linear-time transformations allow existing existing approx-
imations and ideas developed for one problem to apply to the other one. Third,
in term of practicality, the equivalence allows for direct application of off-the-
shelf reachability and verification tools to synthesize and repair programs (and
conversely, application of off-the-shelf synthesis tools to verify programs). Our
approach is not so different from verification works that transform the interested
problems into e.g., SAT/SMT formulas to be solved by existing efficient solvers.

We hope that these results help raise fruitful cross-fertilization among pro-
gram verification and synthesis fields that are usually treated separately. Because
our reductions result in particular reachability problem instances (e.g., with large
guards) that are rarely encountered by current reachability techniques, such as
model checking and symbolic executions, they may help refine existing tools or
motivate optimization in new directions. As an example, our bug repair protype
CETI (discussed in the next Section) has produced reachability instances that
hit a bug in KLEE, which crashes the tool and is confirmed to be important by
the developers5. These hard problems might be used as benchmarks to evalu-
ate verification, reachability, and synthesis tools (similar to benchmarks used in
annual SAT6 and SMT 7 competitions).

4 Automatic Program Repair using Test-Input
Generation

We use the equivalence to develop CETI (Correcting Errors using Test Inputs),
a tool for automated program repair (a synthesis problem) using test-input gen-
eration techniques (which solves reachability problems). We define problem of
program repair in terms of template-based program synthesis:

Definition 3. Single-Edit Program Repair Problem. Given a program Q
that fails at least one test in a finite test suite T and a finite set of parameterized
templates S, does there exist a statement s ∈ Q and parameter values c1, . . . , cn
for the templates in S such that s can be replaced with S[c1, . . . , cn] and the
resulting program passes all tests in T?

5 http://mailman.ic.ac.uk/pipermail/klee-dev/2016-February/001278.html
6 SAT Competitions: http://www.satcompetition.org
7 SMT competitions: http://smtcomp.sourceforge.net/2016

11

CETI implements the key ideas from Theorem 1 in Section 3.2 to transform
this repair problem into a reachability task solvable by existing verification tools.
Given a test suite and a buggy program that fails some test in the suite, CETI
employs the statistical fault localization technique Tarantula [25] to identify par-
ticular code regions for synthesis, i.e., program statements likely related to the
defect. Next, for each suspicious statement and synthesis template, CETI trans-
forms the buggy program, the test suite, the statement and the template into
a new program containing a location reachable only when the original program
can be repaired. Our current implementation uses repair templates similar to
those given in [27, 33], which allow modifying constants, expressions (such as the
linear template shown in Section 2), and logical, comparisons, and arithmetic
operators (such as changing ‖‖ to &&, ≤ to <, or + to −). Finally, we send the
transformed program to the test-input generation tool KLEE, which produces
test values that can reach the designated location. Such test input values, when
combined with the synthesis template and the suspicious statement, correspond
exactly to a patch that repairs the bug. CETI synthesizes correct-by-construction
repairs, i.e., the repair, if found, is guaranteed to pass the test suite.

4.1 Evaluation

To evaluate CETI, we use the Tcas program from the SIR benchmark [14]. The
program, which implements an aircraft traffic collision avoidance system, has
180 lines of code and 12 integer inputs. The program comes with a test suite
of about 1608 tests and 41 faulty functions, consisting of seeded defects such as
changed operators, incorrect constant values, missing code, and incorrect control
flow. Among the programs in SIR, Tcas has the most introduced defects (41),
and it has been used to benchmark modern bug repair techniques [13, 28, 33].

We manually modify Tcas, which normally prints its result on the screen, to
instead return its output to its caller, e.g., printf("output is %d\n",v) becomes
return v. For efficiency, many repair techniques initially consider a smaller num-
ber of tests in the suite and then verify candidate repairs on the entire suite [33].
In contrast, we use all available test cases at all times to guarantee that any re-
pair found by CETI is correct with respect to the test suite. We find that modern
test-input generation tools such as KLEE can handle the complex conditionals
that encode such information efficiently and generate the desired solutions within
seconds.

The behavior of CETI is controlled by customizable parameters. For the ex-
periments described here, we consider the top n = 80 statements with a score
s > 0.2 from the ranked list of suspicious statements and, then, apply the pre-
defined templates to these statements. For efficiency, we restrict synthesis pa-
rameters to be within certain value ranges: constant coefficients c0 are confined
to the integral range [−100000, 100000] while the variable coefficients c1, c2 are
drawn from the set {−1, 0, 1}.

Results. Table 1 shows the experimental results with 41 buggy Tcas versions.
These experiments were performed on a 32-core 2.60GHz Intel Linux system

12

Bug Type R-Progs T(s) Repair? Bug Type R-Progs T(s) Repair?

v1 incorrect op 6143 21 v22 missing code 5553 175 –

v2 missing code 6993 27 v23 missing code 5824 164 –

v3 incorrect op 8006 18 v24 missing code 6050 231 –

v4 incorrect op 5900 27 v25 incorrect op 5983 19
v5 missing code 8440 394 – v26 missing code 8004 195 –

v6 incorrect op 5872 19 v27 missing code 8440 270 –

v7 incorrect const 7302 18 v28 incorrect op 9072 11

v8 incorrect const 6013 19 v29 missing code 6914 195 –

v9 incorrect op 5938 24 v30 missing code 6533 170 –

v10 incorrect op 7154 18 v31 multiple 4302 16

v11 multiple 6308 123 – v32 multiple 4493 17

v12 incorrect op 8442 25 v33 multiple 9070 224 –

v13 incorrect const 7845 21 v34 incorrect op 8442 75

v14 incorrect const 1252 22 v35 multiple 9070 184 –

v15 multiple 7760 258 – v36 incorrect const 6334 10

v16 incorrect const 5470 19 v37 missing code 7523 174 –

v17 incorrect const 7302 12 v38 missing code 7685 209 –

v18 incorrect const 7383 18 v39 incorrect op 5983 20

v19 incorrect const 6920 19 v40 missing code 7364 136 –

v20 incorrect op 5938 19 v41 missing code 5899 29

v21 missing code 5939 31

Table 1. Repair Results for 41 Tcas Defects

with 128 GB of RAM. Column Bug Type describes the type of defect. Incor-
rect Const denotes a defect involving the use of the wrong constant, e.g., 700
instead of 600. Incorrect Op denotes a defect that uses the wrong operator for
arithmetic, comparison, or logical calculations, e.g., ≥ instead of >. Missing code
denotes defects that entirely lack an expression or statement, e.g., a&&b instead
of a&&b||c or return a instead of return a+b. Multiple denotes defects caused
by several actions such as missing code at a location and using an incorrect
operator at another location. Column T(s) shows the time taken in seconds.
Column R-Prog lists the number of reachability program instances that were
generated and processed by KLEE. Column Repair? indicates whether a repair
was found.

We were able to correct 26 of 41 defects, including multiple defects of dif-
ferent types. On average, CETI takes 22 seconds for each successful repair. The
tool found 100% of repairs for which the required changes are single edits ac-
cording to one of our predefined templates (e.g., generating arbitrary integer
constants or changing operators at one location). In several cases, defects could
be repaired in several ways. For example, defect v28 can be repaired by swapping
the results of both branches of a conditional statement or by inverting the con-
ditional guard. CETI also obtained unexpected repairs. For example, the bug in
v13 is a comparison against an incorrect constant; the buggy code reads < 700

13

while the human-written patch reads < 600. Our generated repair of < 596 also
passes all tests.

We were not able to repair 15 of 41 defects, each of which requires edits
at multiple locations or the addition of code that is beyond the scope of the
current set of templates. As expected, CETI takes longer for these programs
because it tries all generated template programs before giving up. One common
pattern among these programs is that the bug occurs in a macro definition,
e.g., #define C = 100 instead of #define C = 200. Since the CIL front end
automatically expands such macros, CETI would need to individually fix each
use of the macro in order to succeed. This is an artifact of CIL, rather than a
weakness inherent in our algorithm.

CETI, which repairs 26 of 41 Tcas defects, performs well compared to other
reported results from repair tools on this benchmark program. GenProg, which
finds edits by recombining existing code, can repair 11 of these defects [33,
Tab. 5]. The technique of Debroy and Wong, which uses random mutation, can
repair 9 of these defects [13, Tab. 2]. FoREnSiC, which uses the concolic exe-
cution in CREST, repairs 23 of these defects [28, Tab. 1]. SemFix out-performs
CETI, repairing 34 defects [33, Tab. 5], but also uses fifty test cases instead of the
entire suite of thousands8. Other repair techniques, including equivalence check-
ing [28] and counterexample guided refinement [28], repair 15 and 16 defects,
respectively.

Although CETI uses similar repair templates as both SemFix and FoREn-
SiC, the repair processes are different. SemFix directly uses and customizes the
KLEE symbolic execution engine, and FoRenSiC integrates concolic execution
to analyze programs and SMT solving to generate repairs. In contrast, CETI
eschews heavyweight analyses, and it simply generates a reachability instance.
Indeed, our work is inspired by, and generalizes, these work, observing that the
whole synthesis task can be offloaded with strong success in practice.

However, there is a trade-off: customizing a reachability solver to the task of
program repair may increase the performance or the number of repairs found,
but may also reduce the generality or ease-of-adoption of the overall technique.
We note that our unoptimized tool CETI already outperforms published re-
sults for GenProg, Debroy and Wong, and FoREnSiC on this benchmark, and is
competitive with SemFix.

Limitations. We require that the program behaves deterministically on the
test cases and that the defect be reproducible. This limitation can be mitigated
by running the test cases multiple times, but ultimately our technique is not
applicable if the program is non-deterministic. We assume that the test cases
encode all relevant program requirements. If adequate test cases are not avail-
able then the repair may not retain required functionality. Our formulation also
encodes the test cases as inputs to a starting function (e.g., main) with a single

8 Thus CETI’s repairs, which pass the entire suite instead of just 50 selected tests,
meet a higher standard. We were unable to obtain SemFix details, e.g., which 50
tests, online or from the authors.

14

expected output. This might not be feasible for certain types of specifications,
such as liveness properties (“eventually” and “always”) in temporal logic. The
efficiency of CETI depends on fault localization to reduce the search space. The
reachability or test-input generation tool used affects both the efficiency and the
efficacy of CETI. For example, if the reachability tool uses a constraint solver
that does not support data types such as string or arrays then we will not be
able to repair program defects involving those types. Finally, we assume that the
repair can be constructed from the provided repair templates.

The transformation in Section 3.2 can turn a finite-space (buggy) program
into an infinite-space reachability problem (e.g., we hypothesize that a bounded
loop guard i ≤ 10 is buggy and try to synthesize a new guard using an unknown
parameter i ≤ c). However, this does not invalidate the theoretical or empircal
results and the transformation is efficient in the program size and the number
of tests. The transformation also might not be optimal if we use complex repair
templates (e.g., involving many unknown parameters). However, in practice we
do not need to synthesize many complex values and thus modern symbolic ex-
ecution tools such as KLEE can solve the transformed problems efficiently, as
shown in our evaluation.

This paper concretely demonstrates the applicability of program reachability
(test-input generation) to program synthesis (defect repair) but not the reverse
direction of using program synthesis to solve reachability. Applying advances
in automatic program repair to find test-inputs to reach nontrivial program
locations remains future work.

5 Related Work

Program Synthesis and Verification. Researchers have long hypothesized
about the relation between program synthesis and verification and proposed
synthesis approaches using techniques or tools often used to verify programs
such as constraint solving or model checking [1, 45]. For example, Bodik and
Solar-Lezama et. al.’s work [42, 41] on sketching defines the synthesis task as:
∃c . ∀(i, o) . ∈ T . (P [c])(i) = o (similar to our template-based synthesis formula-
tion in Definition 1) and solves the problem using a SAT solver. Other synthesis
and program repair researches, e.g., [46, 45, 33, 31, 5], also use similar formulation
to integrate verification tools, e.g., test-input generation, to synthesize desired
programs. In general, such integrations are common in many ongoing synthe-
sis works including the multi-disciplinary ExCAPE project [15] and the SyGuS
competition [47], and have produced many practical and useful tools such as
Sketch that generates low-level bit-stream programs [41], Autograder that pro-
vides feedbacks on programming homeworks [40], and FlashFill that constructs
Excel macros [20, 21].

The work presented in this paper is inspired by these works, and generalizes
them by establishing a formal connection between synthesis and verification us-
ing the template-based synthesis and reachability formulations. We show that
it is not just a coincident that the aforementioned synthesis works can exploit

15

verification techniques, but that every template-based synthesis problem can be
reduced to the reachablity formulation in verification. Dually, we show the other
direction that reduces reachability to template-based synthesis, so that every
reachability problem can be solved using synthesis. Furthermore, our construc-
tive proofs describe efficient (linear time) algorithms to do such reductions.

Program Repair and Test-Input Generation. Due to the pressing demand
for reliable software, automatic program repair has steadily gained research inter-
ests and produced many novel repair techniques. Synthesis repair approaches,
e.g., AFix [23], Angelix [31], SemFix [33], FoRenSiC [8], Gopinath et al. [19],
Jobstmann et al. [24], generate constraints and solve them for patches that are
correct by construction (i.e., guaranteed to adhere to a specification or pass a test
suite). In contrast, generate-and-validate repair approaches, e.g., GenProg [48],
Pachika [12], PAR [26], Debroy and Wong [13], Prophet [30], find multiple re-
pair candidates (e.g., using stochastic search or invariant inferences) and verifies
them against given specifications.

The field of test-input generation has produced many practical techniques
and tools to generate high coverage test data for complex software, e.g., fuzz
testing [32, 16], symbolic execution [9, 10], concolic (combination of static and
dynamic analyses) execution [17, 39], and software model checking [7, 6]. Com-
panies and industrial research labs such as Microsoft, NASA, IBM, and Fujitsu
have also developed test-input generation tools to test their own products [18, 3,
4, 29]. Our work allows program repair and synthesis approaches directly apply
these techniques and tools.

6 Conclusion

We constructively prove that the template-based program synthesis problem and
the reachability problem in program verification are equivalent. We reduce a gen-
eral program synthesis instance to a specific reachability instance consisting of a
special location that is reachable when code could be generated for the synthe-
sis problem. Conversely, we reduce a general reachability instance to a specific
synthesis instance such that a successful synthesis indicates the reachability of
the target location in the original problem. This equivalence connects the fields
of synthesis and reachabilty and enables the application of ideas, optimizations,
and tools developed for one problem to the other.

We use the equivalence to develop CETI, a tool for automated synthesis
using test-input generation techniques that solve reachability problems. CETI
transforms the task of synthesizing program repairs to a reachability problem,
where the results produced by a test-input generation tool correspond to a patch
that repairs the original program. Experimental case studies suggest that CETI
has higher success rates than many other standard repair approaches.

16

References

1. R. Alur, R. Bodik, G. Juniwal, M. M. Martin, M. Raghothaman, S. A. Seshia,
R. Singh, A. Solar-Lezama, E. Torlak, and A. Udupa. Syntax-guided synthesis.
Dependable Software Systems Engineering, 40:1–25, 2015.

2. R. Alur, P. Cerný, and A. Radhakrishna. Synthesis through unification. In CAV,
volume 9207, pages 163–179. Springer, 2015.

3. S. Anand, C. S. Păsăreanu, and W. Visser. JPF–SE: A symbolic execution exten-
sion to Java Pathfinder. In TACAS, pages 134–138. Springer, 2007.

4. S. Artzi, A. Kiezun, J. Dolby, F. Tip, D. Dig, A. Paradkar, and M. D. Ernst.
Finding bugs in dynamic web applications. In ISSTA, pages 261–272. ACM, 2008.

5. P. Attie, A. Cherri, K. D. Al Bab, M. Sakr, and J. Saklawi. Model and program
repair via sat solving. In MEMOCODE, pages 148–157. IEEE, 2015.

6. T. Ball and S. K. Rajamani. The SLAM project: Debugging system software via
static analysis. In POPL, pages 1–3. ACM, 2002.

7. D. Beyer, T. A. Henzinger, R. Jhala, and R. Majumdar. The software model
checker BLAST. Software Tools for Technology Transfer, 9(5-6):505–525, 2007.

8. R. Bloem, R. Drechsler, G. Fey, A. Finder, G. Hofferek, R. Könighofer, J. Raik,
U. Repinski, and A. Sülflow. FoREnSiC–an automatic debugging environment for
C programs. In HVC, pages 260–265. Springer, 2013.

9. C. Cadar, D. Dunbar, and D. R. Engler. KLEE: Unassisted and automatic gen-
eration of high-coverage tests for complex systems programs. In OSDI, volume 8,
pages 209–224. USENIX Association, 2008.

10. C. Cadar and K. Sen. Symbolic execution for software testing: three decades later.
Commun. ACM, 56(2):82–90, 2013.

11. E. M. Clarke, O. Grumberg, and D. Peled. Model checking. MIT Press, 1999.

12. V. Dallmeier, A. Zeller, and B. Meyer. Generating fixes from object behavior
anomalies. In ASE, pages 550–554. IEEE, 2009.

13. V. Debroy and W. E. Wong. Using mutation to automatically suggest fixes for
faulty programs. In Software Testing, Verification and Validation, pages 65–74.
IEEE, 2010.

14. H. Do, S. Elbaum, and G. Rothermel. Supporting controlled experimentation with
testing techniques: An infrastructure and its potential impact. Empirical Software
Engineering, 10(4):405–435, 2005.

15. ExCAPE: Expeditions in computer augmented program engineering. ex-
cape.cis.upenn.edu, 2016-10-19.

16. J. E. Forrester and B. P. Miller. An empirical study of the robustness of Windows
NT applications using random testing. In USENIX Windows System Symposium,
pages 59–68, 2000.

17. P. Godefroid, N. Klarlund, and K. Sen. DART: directed automated random testing.
PLDI, 40(6):213–223, 2005.

18. P. Godefroid, M. Y. Levin, D. A. Molnar, et al. Automated whitebox fuzz testing.
In Network and Distributed System Security Symposium, pages 151–166, 2008.

19. D. Gopinath, M. Z. Malik, and S. Khurshid. Specification-based program repair
using SAT. In TACAS, pages 173–188. Springer, 2011.

20. S. Gulwani. Automating string processing in spreadsheets using input-output ex-
amples. In POPL, pages 317–330. ACM, 2011.

21. S. Gulwani, W. R. Harris, and R. Singh. Spreadsheet data manipulation using
examples. Commun. ACM, 55(8):97–105, Aug. 2012.

17

22. J. Jeon, X. Qiu, J. Fetter-Degges, J. S. Foster, and A. Solar-Lezama. Synthesizing
framework models for symbolic execution. In ICSE, pages 156–167. ACM, 2016.

23. G. Jin, L. Song, W. Zhang, S. Lu, and B. Liblit. Automated atomicity-violation
fixing. In PLDI, pages 389–400. ACM, 2011.

24. B. Jobstmann, A. Griesmayer, and R. Bloem. Program repair as a game. In CAV,
pages 226–238. Springer, 2005.

25. J. A. Jones and M. J. Harrold. Empirical evaluation of the Tarantula automatic
fault-localization technique. In ICSE, pages 273–282. IEEE, 2005.

26. D. Kim, J. Nam, J. Song, and S. Kim. Automatic patch generation learned from
human-written patches. In ICSE, pages 802–811. ACM, 2013.

27. R. Könighofer and R. Bloem. Automated error localization and correction for
imperative programs. In FMCAD. IEEE, 2011.

28. R. Könighofer and R. Bloem. Repair with on-the-fly program analysis. In HVC,
pages 56–71. Springer, 2013.

29. G. Li, I. Ghosh, and S. P. Rajan. KLOVER: A symbolic execution and automatic
test generation tool for C++ programs. In CAV, pages 609–615. Springer, 2011.

30. F. Long and M. Rinard. Automatic patch generation by learning correct code. In
POPL, volume 51, pages 298–312. ACM, 2016.

31. S. Mechtaev, J. Yi, and A. Roychoudhury. Angelix: Scalable multiline program
patch synthesis via symbolic analysis. In ICSE, pages 691–701. ACM, 2016.

32. B. P. Miller, L. Fredriksen, and B. So. An empirical study of the reliability of
UNIX utilities. Commun. ACM, 33(12):32–44, 1990.

33. H. D. T. Nguyen, D. Qi, A. Roychoudhury, and S. Chandra. SemFix: Program
repair via semantic analysis. In ICSE, pages 772–781. ACM, 2013.

34. T. Nguyen, D. Kapur, W. Weimer, and S. Forrest. Using Dynamic Analysis to
Discover Polynomial and Array Invariants. In ICSE, pages 683–693. IEEE, 2012.

35. T. Nguyen, D. Kapur, W. Weimer, and S. Forrest. Connecting program synthesis
and reachability. Technical report, University of Nebraska, Lincoln, oct 2016.

36. G. D. Plotkin. A structural approach to operational semantics. J. Log. Algebr.
Program., 60-61:17–139, 2004.

37. H. Rice. Classes of recursively enumerable sets and their decision problems. Trans.
of the American Mathematical Society, 74(2):358–366, 1953.

38. S. Saha, P. Garg, and P. Madhusudan. Alchemist: Learning guarded affine func-
tions. In CAV, pages 440–446, 2015.

39. K. Sen and G. Agha. CUTE and jCUTE: Concolic unit testing and explicit path
model-checking tools. In CAV, pages 419–423. Springer, 2006.

40. R. Singh, S. Gulwani, and A. Solar-Lezama. Automated feedback generation for
introductory programming assignments. In PLDI, pages 15–26. ACM, 2013.

41. A. Solar-Lezama. Program synthesis by sketching. PhD thesis, University of Cali-
fornia, Berkeley, 2008.

42. A. Solar-Lezama, G. Arnold, L. Tancau, R. Bod́ık, V. A. Saraswat, and S. A.
Seshia. Sketching stencils. In PLDI, pages 167–178. ACM, 2007.

43. A. Solar-Lezama, R. Rabbah, R. Bod́ık, and K. Ebcioğlu. Programming by sketch-
ing for bit-streaming programs. PLDI, 40:281–294, 2005.

44. S. Srivastava. Satisfiability-based program reasoning and program synthesis. PhD
thesis, University of Maryland, 2010.

45. S. Srivastava, S. Gulwani, and J. S. Foster. From program verification to program
synthesis. In POPL, pages 313–326. ACM, 2010.

46. S. Srivastava, S. Gulwani, and J. S. Foster. Template-based program verification
and program synthesis. Software Tools for Technology Transfer, 15(5-6):497–518,
2013.

18

47. SyGuS: Syntax-guided synthesis competition. www.sygus.org, 2016-10-19.
48. W. Weimer, T. Nguyen, C. Le Goues, and S. Forrest. Automatically Finding

Patches Using Genetic Programming. In ICSE, pages 364–367. IEEE, 2009.

19

7 Appendix: Correctness Proofs

7.1 Formal Semantics

We use standard operational semantics to reason about the meanings and exe-
cutions of programs [36]. A state σ maps variables to values. Given a program
P , the large-step judgment 〈P, σ〉 ⇓ σ′ means that P , when executed in an initial
state σ, terminates in state σ′. The small-step judgment 〈P, σ〉 → 〈P ′, σ′〉 means
that if P is executed in state σ for one single step, it transitions to (or reduces
to) program P ′ in state σ′. We write →∗ for the reflexive, transitive closure
of that relation (i.e., zero or more steps). Both large-step and small-step judg-
ments are proved or constructed using derivations, tree-structured mathematical
objects made of well-formed instances of inference rules. We write D :: . . . to
indicate that D is a derivation proving a judgment. There is often only one
inference rule for each statement type (e.g., one assignment rule for reasoning
about assignment statements), which admits reasoning by inversion: for exam-
ple, if D :: 〈P, σ〉 ⇓ σ′ and P is an assignment statement, then D must be the
assignment rule (and not, for example, the while loop rule), and vice-versa.

We write σ |= B to denote that a state σ makes a predicate B true. We write
wp(P,B) for the weakest precondition of P with respect to postcondition B. If
A = wp(P,B), then if P executes in a state that makes the precondition A true
and it terminates, then it terminates in a state making postcondition B true.

We use large-step operational semantics when reasoning about synthesis,
where we focus on the final value of the program (i.e., its behavior on a test). We
use small-step operational semantics when reasoning about reachability, where
intermediate steps matter (i.e., did the program execution visit a particular
label?). We use induction on the structure of a derivation to show that a property
holds for all executions of all programs (informally, if the property holds for one-
step programs like skip, and it also holds whenever one more execution step
is added, then it always holds). We use weakest preconditions to reason about
special conditional statements that encode test cases.

Our use of small-step and large-step semantics, as well as structural induc-
tion on derivations and preconditions, is standard (i.e., the proofs and the con-
structions are novel, but not the proof machinery). The reader is referred to
Plotkin [36] for a thorough introduction.

7.2 Reducing Synthesis to Reachability

We prove correct the constructive reduction given in Section 3.2. The correctness
of GadgetS2R hinges on two key invariants. First, function calls in the derived
program P have the same behavior as templated functions in the original pro-
gram Q. Second, location L is reachable if and only if values ci can be assigned to
variables vi such that Q passes all of the tests. Formally, we say that GadgetS2R
maintains the invariants described by the following Lemmas. For brevity, we
write σ1 'V σ2 to denote ∀x. x 6∈ V ⇒ σ1(x) = σ2(x) — that is, state equiva-
lence modulo a set of variables V .

20

We first show that pq(input) behaves as q[c1, . . . , cn](input), when the new
vi variables in P are assigned the values ci. Formally,

Lemma 1. Let (P,L) = GadgetS2R(Q,S, T). For all states σ1, σ2, σ3, all values
c1, . . . , cn, i, and all functions q ∈ Q, if σ1(vi) = ci then D1 :: 〈pq(i), σ1〉 ⇓ σ2 if
both D2 :: 〈q[c1, . . . , cn](i), σ1〉 ⇓ σ3 and σ2 '{v1,...,vn} σ3.

Proof. The proof proceeds by induction on the structure of the operational se-
mantics derivation of D1. Let σ1 be arbitrary with σ1(vi) = ci.

Note that by Step 2 of the GadgetS2R construction, each pq(i) ∈ P corre-
sponds to q[c1, . . . , cn](i) ∈ Q in a particular manner. Indeed, all subexpressions
in pq and q are identical except for one case. References to template parameters
ci in the templated program Q correspond exactly to references to variables vi

in the derived reachability program P .
Thus, by inversion, the structure of D1 corresponds exactly to the structure

of any D2 except for variable references. The inductive proof considers all of the
cases for the derivation D1. For brevity, we show only the non-trivial case.

Case 1 (Template Variable Read). Suppose D1 is:

σ2 = σ1[a 7→ σ1(vi)]

〈a := vi, σ1〉 ⇓ σ2
assign-variable

By inversion and the construction of P , D2 is:

σ3 = σ1[a 7→ ci]

〈a := ci , σ1〉 ⇓ σ3
assign-template-parameter

Note that in D1, vi is a normal program variable expression (referring to a
variable introduced in Step 1 of the construction), while in in D2, ci is a
reference to a template parameter. We must show that σ2 '{v1,...,vn} σ3. Since
σ2 and σ3 agree with σ1 on all variables except a, it only remains to show that
σ2(a) = σ3(a) (since a 6∈ {v1, . . . , vn}). By the σ definitions from D1 and D2,
that obligation simplifies to showing that σ1(vi) = ci, which was part of the input
formulation for this Lemma. (Intuitively, σ1(vi) = ci means that the reachability
analysis assigned the values ci to each variable vi.)

The other cases, which do not involve the template parameters vi, are direct
(the inference rule used in D1 will exactly mirror the inference rule used in D2).

Having established that the executions of P ’s functions mirror Q’s func-
tions (modulo the template parameters, which are held constant), we now es-
tablish that reaching L in P via assigning each vi the value ci corresponds to
Q[c1, . . . , cn] passing all of the tests.

Lemma 2. Let (P,L) = GadgetS2R(Q,S, T). The execution of P reaches L
starting from state σ1 if and only if σ1 |= wp(Q[c1, . . . , cn](i1), result = o1) ∧
· · · ∧ wp(Q[c1, . . . , cn](im),
result = om), where σ1(vi) = ci, result denotes the return value of Q, and wp is
the weakest precondition.

21

Proof. By construction, there is exactly one location L in P : “if e: [L]” is the
body of pgadget ∈ P . From Step 3, e has the general form f(i1) = o1 ∧ · · · ∧
f(im) = om. By the standard weakest precondition definitions for if, conjunction,
equality and function calls, we have that L is reachable if and only if σ1 |=
wp(pgadget(ii), result = o1) ∧ · · · ∧ wp(pgadget(im), result = om). That is, the
label is reachable iff the derived gadget program passes the tests (with variables
vi 7→ ci). We now show that this occurs if and only if the original templated
program passes the tests (with template parameters ci 7→ ci).

By conjunction elimination, for each test (i, o) we have σ1 |= wp(pgadget(i), result =
o). By the soundness and completeness of weakest preconditions with respect to
operational semantics,9 we have that 〈pgadget(i), σ1〉 ⇓ σ2 iff σ2 |= result = o
(equivalently, σ2(result) = o). By Lemma 1, we have 〈Q[c1, . . . , cn](i), σ1〉 ⇓ σ3
with state σ2 '{v1,...,vn} σ3. Since result 6∈ {v1, . . . , vn}, we have σ3(result) =
σ2(result) = o. That is, the template program Q, filled in with the concrete
values ci, when run on any test input i yields the expected result o. This occurs
if and only if an execution of P reaches L starting in a state that maps each vi
to ci.

This Lemma leads directly to the main result for this direction of the reduc-
tion.

Theorem 3. Let Q be a program with template parameters S = { c1 , . . . , cn }
and a test suite T = {(i1, o1), . . . }. Let (P,L) = GadgetS2R(Q,S, T). Then there
exist parameter values ci such that ∀(i, o) ∈ T . (Q[c1, . . . , cn])(i) = o if and only
if there exist input values ti such that the execution of P with vi 7→ ti reaches L.
That is, the template-based synthesis problem in Definition 1 is reducible to the
reachability problem in Definition 2.

Proof. This follows directly from Lemma 2 with ti equal to ci.

7.3 Reducing Reachability to Synthesis

We now address the correctness of the constructive reduction given in Section 3.3.
The correctness of GadgetR2S also relies on two key invariants. First, for any ci,
execution in the derived templated program Q with ci 7→ ci mirrors execution

in P with vi 7→ ci up to the point when L is reached (if ever). Second, the
exception REACHED is raised in Q iff location L is reachable in P .

We first show that qp[c1, . . . , cn] behaves as p with vi 7→ ci. Because our
construction uses exceptions, we phrase the lemma formally using small-step
operational semantics.

9 Our approach is thus sound and relatively complete in practice. An implementation
would use provability (`), such as from an SMT solver, instead of truth (|=). While
sometimes sound on restricted domains, decision procedures are not complete in
general, in which case a failure to solve the reachability problem P does not imply
that the synthesis problem Q has no solution.

22

Lemma 3. Let Q,S, T = GadgetR2S(P,L, vi). For all states σ1, σ2, σ3, all val-
ues ci, all functions p ∈ P , and all programs p′ and q′p, if σ1(vi) = ci then we have
D1 :: 〈p, σ1〉 →∗ 〈p′, σ2〉 with L not executed in D1 iff D2 :: 〈qp, σ1〉 →∗ 〈q′p, σ3〉
with raise REACHED not executed in D2 and σ2 'vi σ3 where q′p is equal to p′

with each vi replaced by ci and each [L] replaced by raise REACHED.

Proof. The proof proceeds by induction on the structure of the operational se-
mantics derivation D1. The proof follows the reasonings shown in Section 3.2
and is elided in the interest of brevity.

Having established that the execution of Q’s functions mirrors the execution
of P ’s functions before the location L is reached (when ci = vi = ci), we now
demonstrate that exception REACHED is raised in Q iff location L is reachable in
P :

Lemma 4. Let Q,S, T = GadgetR2S(P,L, vi). For all values ci, Then Q[c1, . . . , cn]() =
1 iff location L is reachable in P starting from a state with vi 7→ ci.

Proof. The proof follows from the instantiation of Lemma 3. By construction
and the operational semantics rules for try-catch, qmain returns 1 iff qp did raise
REACHED. By construction, there is exactly one occurrence of raise REACHED in Q,
and that statement occurs at a point corresponding to the singular location L
in P . Note that qp is derived from p and shares the same structure except that
reads from variables vi in P are replaced with reads from template variables ci
in Q and the location L is replaced by raise REACHED.

Thus we apply Lemma 3 with p = pmain, qp = qmain and σ1 such that
σ1(vi) = ci (from the statement of Lemma 4). Since Lemma 3 applies to all
program points p′ and q′p up to the first execution of L (resp. raise REACHED),
we have a derivation D1 starting in σ1 and ending in p′ = [L]; p′′ iff we have a
matching derivation D2 starting in σ1 and ending in q′p = raise REACHED; q′′p .

Thus, L is reachable in P starting from a state σ1(vi) = ci iff Q[c1, . . . , cn]()
returns 1.

This Lemma leads directly to the Theorem for this direction of the reduction.

Theorem 4. Let P be a program with a location L and global variables v1, . . . , vn.
Let Q,S, T = GadgetR2S(P,L, vi). Then there exist input values ti such that the
execution of P with vi 7→ ti reaches L iff there exist parameter values ci such
that ∀(i, o) ∈ T.(Q[c1, . . . , cn])(i) = o. That is, the reachability problem in Defi-
nition 2 is reducible to the template-based synthesis problem in Definition 1.

Proof. This follows from Lemma 4 with ti equal to ci. Note that T is the singleton
set containing (∅, 1) by construction, so the universal qualifier reduces to the
single assertion Q[c1, . . . , cn]() = 1.

