
iGen: Dynamic Interaction Inference for Configurable
Software

ThanhVu Nguyen Ugur Koc Javran Cheng Jeffrey S. Foster Adam A. Porter
University of Maryland, College Park, USA

{tnguyen, ukoc, javran, jfoster, aporter}@cs.umd.edu

ABSTRACT
To develop, analyze, and evolve today’s highly configurable
software systems, developers need deep knowledge of a sys-
tem’s configuration options, e.g., how options need to be
set to reach certain locations, what configurations to use
for testing, etc. Today, acquiring this detailed information
requires manual effort that is difficult, expensive, and error
prone. In this paper, we propose iGen, a novel, lightweight
dynamic analysis technique that automatically discovers a
program’s interactions—expressive logical formulae that give
developers rich and detailed information about how a sys-
tem’s configuration option settings map to particular code
coverage. iGen employs an iterative algorithm that runs a
system under a small set of configurations, capturing cov-
erage data; processes the coverage data to infer potential
interactions; and then generates new configurations to fur-
ther refine interactions in the next iteration. We evaluated
iGen on 29 programs spanning five languages; the breadth
of this study would be unachievable using prior interaction
inference tools. Our results show that iGen finds precise
interactions based on a very small fraction of the number of
possible configurations. Moreover, iGen’s results confirm sev-
eral earlier hypotheses about typical interaction distributions
and structures.

CCS Concepts
•Software and its engineering → Software testing
and debugging; Software configuration management
and version control systems; Dynamic analysis;

Keywords
Program analysis; software testing; configurable systems;
dynamic analysis

1. INTRODUCTION
Modern software systems are increasingly designed to be

configurable. This has many benefits, but it also greatly

complicates tasks such as testing, debugging, and impact
analysis because the total number of configurations can be
very large. To carry out such tasks, developers must take
advantage of task-specific structure in a system’s configura-
tion space. For example, a developer may observe that many
configurations are the same in terms of the coverage they
achieve under a test suite, and thus developers can perform
effective testing using just a small set of configurations.

In prior work [22, 26, 27], we showed how to automati-
cally infer interactions that concisely describe a system’s
configurations. Our focus is coverage, and we formally define
an interaction to be a formula φ over configuration options
such that (a) any configuration satisfying φ covers some lo-
cation L under a given test suite and (b) φ is the logically
weakest such formula (i.e., if ψ also describes configurations
covering L then ψ ⇒ φ). Thus, by knowing a system’s
interactions, a developer can determine useful information
about configurations, e.g., given a location, determine what
configurations cover it; given an interaction, determine what
locations it covers; find important options and compute a
minimal set of configurations to achieve certain coverage; etc.
In the literature, feature interactions and presence conditions
(Section 5) are similar to interactions and can explain func-
tional (e.g., bug triggers, memory leaks) and non-functional
(e.g., performance anomalies, power consumption) behav-
iors. Interactions can also aid reverse engineering and impact
analysis [2, 24].

While our prior work was promising, it has significant
limitations. In our first effort, we inferred interactions using
Otter, a symbolic executor for C [22]. However, symbolic ex-
ecution does not scale to large systems, even when restricted
to configuration options; is brittle in the presence of frame-
works, libraries, and native code; and is language-specific.
In our second effort, we developed iTree [27], which infers
interactions using dynamic analysis and machine learning.
However, iTree’s focus is on finding configurations to maxi-
mize coverage, and in practice it only discovers a small set
of interactions. (Section 5 discusses these prior systems in
more detail.)

In this paper, we introduce iGen, a new dynamic analysis
tool for automatically discovering a program’s interactions.
iGen works by iteratively running a subject program under
a test suite and set of configurations; inferring potential
interactions from the resulting coverage information; and
then generating new configurations that aim to refine the
inferred interactions on the next iteration. By carefully
choosing new configurations in this last step, iGen is able to
quickly converge to a final, precise set of interactions using

only a small set of configurations.
Moreover, iGen’s design overcomes the limitations of Ot-

ter and iTree. The only language-specific portion of iGen
is obtaining code coverage, which is widely available for al-
most any language. iGen’s analysis is also very lightweight
and scalable, because, as we explain later, it uses simple
computations over coverage information to infer interactions.
Finally, although we did not mention it earlier, our prior
work was restricted to inferring interactions that are purely
conjunctive. In contrast, iGen supports interactions that are
purely conjunctive, purely disjunctive, and specific mixtures
of the two. (Section 2 describes iGen in more detail.)

We evaluated iGen by running it on 29 programs, far
more than we were ever able to use with Otter or iTree.
Our subject programs span five languages (C, Perl, Python,
Haskell, and OCaml); range in size from tens of lines to
hundreds of thousands of lines; and have between 2 and 50
configuration options. For most programs we apply iGen to
run-time configuration options, but for one program, httpd,
we study compile-time configuration options. (Section 3
describes our subject programs.)

We considered three research questions. First, we evaluated
the correctness of iGen’s inferred interactions. We found
that, for a subset of the subject programs, the interactions
produced by iGen’s iterative algorithm are largely similar to
what iGen would produce if it inferred interactions from all
possible configurations. This suggests iGen does converge to
the optimal solution. We also manually inspected a subset
of the interactions found by iGen and verified they match
the logic in the code.

Second, we measured iGen’s performance and found it
explores a very small fraction of the number of possible
configurations. Moreover, like the work of Reisner et al.,
iGen generates dramatically more precise interactions than
iTree. Yet, it runs in a small fraction of the time required
for Reisner et al.’s experiments.

Finally, we analyzed iGen’s output to learn interesting
properties about the subject programs. We confirmed sev-
eral results found in prior work [22,26,27], among them: the
number of interactions is far smaller than what is combinato-
rially possible; yet a few (very) long interactions are needed
for full coverage; and enabling options, which must be set
a certain way to achieve most coverage, are common. We
should emphasize that our prior work hypothesized these
based cumulatively on just four programs in one language,
whereas we observe them based on 29 programs in five lan-
guages. We also observed new phenomena: that disjunctive
and mixed interactions are less common than conjunctive
ones, but nonetheless cover a non-trivial number of lines.
Finally, we showed that iGen’s interactions can be used to
compute a small set of configurations that cover all or most
lines of the programs. (Section 4 reports on our evaluation.)

We believe iGen takes an important step forward in the
practical understanding of configurable systems.

2. IGEN ALGORITHM
We begin our presentation by describing the iGen algo-

rithm, whose pseudo-code is shown in Figure 1. The input
to iGen is a program P and a test suite T , and the output
is a set of interactions for locations in P that were covered
when running on T . iGen works by iteratively generating
a set of configurations (configs in the algorithm) until the
coverage (cov) and interactions (ints) inferred from that set

input : a program P and a test suite T
output : a set of interactions of P

1 cov, ints← ∅
2 configs← oneWayCoveringArray() ∪ {default config}
3 while true do
4 old cov ← cov
5 old ints ← ints
6 cov, ncov← runTestSuite(P, T, configs)
7 // returns cov(l) = {c | c covers l}
8 // ncov(l) = {c | c does not cover l}
9 foreach location l ∈ cov do

10 conj← t· cov(l)

11 disj← ¬(t· ncov(l))

12 disj′ ← ¬t· {c | c ∈ ncov(l) ∧ c⇒ conj}
13 conjdisj← conj ∧ disj′

14 conj′ ← t· {c | c ∈ cov(l) ∧ disj⇒ ¬c}
15 disjconj← disj ∨ conj′

16 ints(l)← (conj, disj, conjdisj, disjconj)

17 if cov = old cov ∧ ints = old ints then break

18 configs ← genNewConfigs(ints)

19 foreach location l ∈ cov do
20 ints(l)← check(ints(l), cov(l))
21 result(l)← selStrongest(ints(l))

22 return result

Figure 1: iGen’s iterative algorithm for inferring
program interactions.

reach a fix-point.
The algorithm begins on line 2 by initializing configs to

a randomly generated 1-way covering array [5, 6], i.e., it
contains all possible settings of each individual option. The
algorithm also includes a default configuration if one is avail-
able. In our experience, such a configuration typically yields
high coverage under the test suite and hence is a useful
starting point. On line 6, iGen runs the test suite under the
current set of configurations,1 producing two coverage maps:
cov maps each location l to the set of configurations c such
that at least one test covers l under c, and ncov maps l to
the set of configurations that do not cover l.

Then for each location l covered by the test suite under
some configuration (line 9), iGen infers candidate interactions.
Although in theory interactions can be arbitrary formulae,
iGen keeps its inference process efficient by assuming inter-
actions follow particular syntactic templates. As it iterates,
iGen computes the most precise interaction for each location
for each template. At the end of the algorithm, iGen selects
the strongest (in a logical sense) interaction per location
across the different templates.

Currently, iGen supports four templates: conj, a purely
conjunctive interaction; disj, a purely disjunctive interaction;
conjdisj, a conjunctive interaction where the last conjunct
is a disjunct; and disjconj, a disjunctive interaction where
the last disjunct is a conjunct. We explain the computa-
tion of the interactions in detail below. This particular set

1In practice iGen memoizes the coverage information from
previous runs and only runs the test suite under the new
configurations.

// options : s, t, u, v, x, y, z
int max z = 3;

if (x && y) {
printf ("L0\n"); // x ∧ y
if (!(0 < z && z < max z)){

printf ("L1\n"); // x ∧ y ∧ (z ∈ {0, 3, 4})
}
}else{

printf ("L2\n"); // ¬x ∨ ¬y
}
printf ("L3\n"); // true
if (u && v) {

printf ("L4\n"); // u ∧ v
if (s || t) {

printf ("L5\n"); // u ∧ v ∧ (s ∨ t)
}
}

Figure 2: Program with seven configuration options.
Locations L0–L5 are annotated with associated in-
teractions.

of templates was chosen partially based on our experience
(e.g., we believe conjunctive interactions are very common)
and partially based on what is efficient to compute (e.g.,
mixing one disjunction into a conjunction or vice-versa is a
relatively small cost, whereas more complex interleavings of
conjunctions and disjunctions would be much less efficient.)

After saving candidate interactions (line 16), the loop ter-
minates if iGen has reached a fix-point (line 17). Otherwise,
iGen creates additional configurations (line 18) designed to
refine interactions (details below) and continues iteration.

After the main loop terminates, there are two steps remain-
ing. First, because of some heuristics in iGen’s interaction
generation, some interactions it computes may not actually
cover the expected lines. Thus on line 20, iGen iterates
through the set of interactions and checks that for any in-
teraction φ for l, it is actually the case that c ⇒ φ for all
configurations c that cover l. iGen eliminates any interaction
that fails this check by setting it to true. Second, on line 21,
iGen sets result(l) to be the logically strongest interaction
among conj, disj, conjdisjm, and disjconj. If there is no single
strongest interaction, iGen eliminates any interactions that
are weaker than another and returns the conjunction of the
remaining strongest interactions.

Running Example. We next use the C program in Figure 2
to explain the details of iGen. This program has seven
configuration options, listed on the first line of the figure.
The first six options are boolean-valued, and the last one,
z, ranges over the set {0, 1, 2, 3, 4}. Thus, this program has
26 × 5 = 320 possible configurations.

The code in Figure 2 includes print statements that mark
six locations L0–L5. At each location, we list the associated
desired interaction. For example, L1 is covered by any con-
figuration in which x and y are true and z is 0, 3, or 4. As
another example, L3 is covered by any configuration, hence
its interaction is true.

Prior approaches to interaction inference are not sufficient
for this example. The work of Reisner et. al [22] only supports

conjunctions, so it must approximate the interactions for L1,
L2, and L5. iTree [27] actually produces no interactions for
this example, because all lines are covered by iTree’s initial
two-way covering array (iTree stops generating interactions
when no new coverage is achieved).

For this example, iGen initializes configs to the following
covering array (there is no default configuration):

config s t u v x y z coverage

c1 0 0 1 1 1 0 1 L2, L3, L4
c2 1 1 0 0 1 1 0 L0, L1, L3
c3 0 0 1 1 0 0 2 L2, L3, L4
c4 0 0 1 1 1 1 3 L0, L1, L3, L4
c5 0 1 1 1 1 0 4 L2, L3, L4, L5

We list the coverage of each configuration on the right.

Conjunctive Interactions. The first interaction template,
conj, supports conjunctions of membership constraints x ∈ S
indicating option x ranges over set S. For example, the
interaction for L1 in Figure 2 is shorthand for (x ∈ {1})∧(y ∈
{1}) ∧ (z ∈ {0, 3, 4}). On line 10 of the algorithm, iGen
infers conj by taking the pointwise union of the covering
configurations’ option settings and then conjoining them.
We denote this operation by t· . For example, the table below
shows the pointwise union of the two covering configurations
c2 and c4. Here > is the universal set for an option.

L1 s t u v x y z

c2 1 1 0 0 1 1 0
c4 0 0 1 1 1 1 3

union > > > > 1 1 0, 3

Thus to form conj = c2 t· c4 for L1 we simply conjoin
the option settings from the above table to yield conj =
x ∧ y ∧ (z ∈ {0, 3}), where we write x and y for x ∈ {1} and
y ∈ {1}. Note we omit constraints corresponding to >, since
those indicate options that can take any value.

At this point, conj is close to, but not quite, the correct
interaction for L1. The problem is that configs is missing a
configuration where x = y = 1 and z = 4. Thus—skipping
over the other templates and other locations for the moment—
for the next iteration iGen generates additional configurations
to refine the set of interactions, using the genNewConfigs call
on line 18.

iGen derives these new configurations by systematically
changing the settings from one selected interaction from ints.
For example, genNewConfigs might generate new configura-
tions from interaction conj to yield:

config s t u v x y z coverage

c6 1 0 1 0 0 1 0 L2, L3
c7 0 0 0 1 1 0 3 L2, L3
c8 1 1 0 1 1 1 1 L0, L3
c9 1 0 1 0 1 1 2 L0, L3
c10 1 0 0 1 1 1 4 L0, L1, L3

Here each configuration disagrees with conj = x ∧ y ∧ (z ∈
{0, 3}) in one setting, e.g., c6 has ¬x, c7 has ¬y, and c8
has z = 1. Then the next iteration of the fix-point loop
will compute conj for L1 from c2, c4, and c10. Since c10 has
x = y = 1 and z = 4 (which was not covered in the first
set of configurations), iGen produces the correct interaction
x ∧ y ∧ (z ∈ {0, 3, 4}).

In practice, we could choose any interaction for any line
and use it to generate new configurations. Currently, iGen’s

heuristic is to choose the longest current interaction, based
on our prior experience suggesting long interactions are un-
common and hence likely to be inaccurate. If there is a tie
for longest interaction, iGen selects randomly among the
longest. If iGen selects an interaction that does not fully
constrain some configuration options, then it assigns random
values (satisfying whatever constraint in present) to those
options when creating new configurations.

Disjunctive Interactions. Next let us consider the interac-
tion ¬x ∨ ¬y for L2 in Figure 2. By construction, conj cannot
encode this formula—although the membership constraints
in conj are a form of disjunction (e.g., z ∈ {0, 3} is the same
as z = 0 ∨ z = 3), they cannot represent disjunctions among
different variables.

There are a variety of potential ways to infer more general
disjunctions, but we want to maintain the same efficiency
as inferring conjunctive interactions. To motivate iGen’s
approach to disjunctions, observe that L2’s interaction arises
because an else branch was taken. In fact, L2’s interaction is
exactly the negation of the interaction for L0 from the true
branch. Thus, iGen computes disjunctive interactions by first
computing a non-covering interaction, which is a conjunctive
interaction for the configurations that do not cover line
L2, and then negates it to get a disjunctive interaction
for L2 (line 11). In our running example, c2 and c4 are
the only configurations that do not cover L2, thus iGen
computes c2 t· c4 = x ∧ y ∧ (z ∈ {0, 3}). Negating that yields
disj = ¬x∨¬y ∨ (z ∈ {1, 2, 4}), which is close to the correct
interaction for L2.

Notice this approach to disjunctions is a straightforward
extension of conjunctive interaction inference. Also notice
that it is heuristic since the computed interaction may not
actually cover the given line; thus disjunctive interactions
may be eliminated on line 20 of the algorithm in Figure 1.

Disjunctive interactions can be refined in two ways. First,
they may be refined by coincidence if genNewConfigs selects
a long conjunctive interaction to refine. Second, genNewCon-
figs also considers the negation of disj as a possible longest
interaction to use for refinement (essentially refining an inter-
action describing configurations that do not reach the current
location).

Mixed Interactions. Finally, some interactions require mix-
tures of conjunctions and disjunctions, such as the interaction
u ∧ v ∧ (s ∨ t) for L5. Looking at Figure 2, notice this inter-
action occurs because a disjunctive condition is nested inside
of a conjunctive condition—in fact, the interaction for L5 is
the interaction for L4 with one additional clause.

This motivates iGen’s approach to inferring mixed inter-
actions by extending shorter interactions. Lines 12–13 give
the code for computing conjdisj. Recall that to compute the
pure disjunction disj, iGen negates the pointwise union of
non-covering configurations. On line 12 we use the same idea
to compute disj′, but instead of all non-covering configura-
tions, we only include the non-covering configurations that
satisfy conj. Essentially we are projecting the iGen algorithm
onto just configurations that satisfy that interaction. Thus,
when we infer the disjunction disj′, we conjoin it onto conj
to compute the final mixed interaction.

For our running example, after several iterations conj for
L5 will be u∧v (details not shown). Out of the configurations
that do not cover L5, only c1, c3, and c4 also satisfy u ∧ v.

Thus disj′ will be ¬(c1t· c3t· c4) = s∨ t∨¬u∨¬v∨(z ∈ {0, 4}).
Thus after some simplification we get conj ∧ disj′ = u ∧ v ∧
(s ∨ t ∨ (z ∈ {0, 4})), which is almost the interaction for
L5. After further iteration, iGen eventually reaches the final,
fully precise interaction for L5.

Using the dual of the above approach, lines 14–15 infer
another mixed interaction disjconj by extending the com-
puted disjunctive interaction disj with a conjunction conj′.
Here conj′ is generated just like conj, but we only include
configurations that disagree in some setting with some clause
of disj, since otherwise the configuration is already included
in the left side of the disjunct on line 15.

Notice that iGen’s approach for inferring mixed interac-
tions maintains the efficiency of computing pure conjunctions
and disjunctions. We could extend the algorithm further to
compute conjunctions with nested disjunctions with nested
conjunctions etc., but we have not explored that yet.

Lastly, in addition to considering conj and disj as potential
longest interactions, genNewConfigs also considers conj’; and
(negated) disj’. Thus, mixed interactions may be refined
whenever one of those four components is refined.

Discussion. Putting this all together, after running to com-
pletion, iGen produces the same interactions for our example
as in the comments in Figure 2. Moreover, iGen finds these
interactions by analyzing just 37 configurations instead of
320 possible configurations. The experiments in Section 4
show that iGen analyzes an even smaller fraction of the
possible configurations on programs with a large number of
configuration options.

As mentioned above, iGen has several sources of random-
ness: the one-way covering array, the interaction used for
generating new configurations, and the values of un- or under-
constrained option settings in those new configurations. Thus,
iGen is actually a stochastic algorithm that may produce
slightly different results each time. However, in our experi-
ments we demonstrate that the variance is reasonable.

Moreover, the computation of each iteration of iGen is
straightforward and efficient. Pointwise union is linear in
the number of configurations and options. Checking the
various implications is done with an SMT solver, which is
very efficient in practice. As discussed in Section 4.2, iGen’s
running time is mostly consumed by running the test suite
(line 6).

Finally, notice that if iGen were to iterate until it had
generated all configurations, then it would be guaranteed
to produce correct interactions if they fall under the given
templates. For example, suppose some location L has a
purely conjunctive interaction x∧ y. Then if we consider the
set of all configurations that cover L, they all satisfy x ∧ y;
but, the set has configurations that differ in every possible
way for options that are not x and y. Thus, pointwise union
of this set will yield x and y as true and every other option
as >. Hence iGen must produce the correct interaction x∧ y.
Similar arguments follow for the other interaction templates.
In Section 4.1, we take advantage of this observation to help
evaluate the correctness of iGen’s inferred interactions.

3. SUBJECT PROGRAMS
iGen is implemented in approximately 2,500 lines of Python.

It uses the Z3 SMT solver [9] to reason about implications.
We computed line coverage using gcov for C, python-cov [21]
for Python, and MDevel::Cover [16] for Perl. We computed

Table 1: Subject programs.
prog lang ver loc opts cspace tests
id C 8.23 332 10 1024 4
uname C 8.23 281 11 2048 2
cat C 8.23 496 12 4096 12
mv C 8.23 375 11 5120 14
ln C 8.23 478 12 10 240 14
date C 8.23 469 7 17 280 11
join C 8.23 892 12 18 432 8
sort C 8.23 3348 22 6 291 456 9
ls C 8.23 3545 47 3.5× 1014 16

p-id Perl 0.14 131 8 256 4
p-uname Perl 0.14 25 6 64 2
p-cat Perl 0.14 47 7 128 12
p-ln Perl 0.14 62 2 4 14
p-date Perl 0.14 136 5 3360 11
p-join Perl 0.14 178 10 4608 8
p-sort Perl 0.14 399 11 2048 9
p-ls Perl 0.14 403 26 6.7× 107 16

cloc Perl 1.62 8014 19 524 288 296
ack Perl 2.14 2711 32 4.3× 109 5
grin Python 1.2.1 628 21 2 097 152 5
pylint Python 1.3.1 7837 29 5.8× 1010 93
hlint Haskell 1.9.21 3266 12 8192 594
pandoc Haskell 1.13.2 24 755 22 4.0× 109 42
unison OCaml 2.48.3 29 796 16 393 216 5
bibtex2html OCaml 1.98 9172 33 1.2× 109 3
gzip C 1.6 32 080 17 131 072 10
httpd C 2.2.29 238 345 50 1.1× 1015 400

vsftpd C 2.0.7 10 482 30 2.1× 109 64
ngircd C 0.12.0 13 601 13 29 764 141

expression coverage using Bisect [3] for OCaml and Hpc [14]
for Haskell.

Our experiments were performed on a 2.40GHz Intel Xeon
CPU with 16 GB RAM running RedHat Enterprise Linux
5.11 (64-bit). The source code for iGen is available at https:
//bitbucket.org/nguyenthanhvuh/igen.

Programs. Table 1 lists our subject programs. For each
program, we list its name, language, version, and lines of code
as measured by SLOCCount [25]. Note that the line count is
typically higher than the number of locations reachable by
the test suite. We also report the number of configuration
options (opts) and the total number of possible configurations
(cspace). Finally, we list the number of test cases in the
program’s test suite.

The first group of programs comes from the widely used
GNU coreutils. These programs are configured via command-
line options. We selected a subset of coreutils with relatively
large configuration spaces (at least 1024 configurations each).
The second group comprises coreutils reimplemented in the
Perl Power Tools (PPT) project [20] (excluding mv which
was not implemented in PPT). These programs are named
as the coreutils programs but with a prefix of p-.

The third group contains an assortment of programs to
demonstrate iGen’s wide applicability. Briefly: cloc is a
lines-of-code counter; ack and grin are grep-like programs;
pylint and hlint are static checkers for Python and Haskell,
respectively; pandoc is a document converter; unison is a file
synchronizer; bibtex2html converts BibTeX files to HTML;
gzip is a compression tool; and finally, httpd is the well-known
Apache http server. Cumulatively these programs span five
languages (two programs per languages) and range from a

few thousand to hundreds of thousands of lines.
The last group comprises vsftpd, a highly secure ftp server,

and ngircd, an IRC daemon. These programs were also
studied by Reisner et al. [22], who used Otter, a symbolic
execution tool, to exhaustively compute all possible program
executions under all possible settings of certain configuration
options. To make a direct comparison to Reisner et al.’s work
possible, we ran iGen on these programs in a special mode
in which, rather than running a test suite, we used Otter’s
output as an oracle of which lines are reachable under which
configurations.

Configuration Options. We selected configuration options
for study in a variety of ways. We studied all options for
coreutils. Most of these options are boolean-valued, but
nine can take on a wider but finite range of values, all of
which we included, e.g., we include all possible formats date
accepts. We omit options that range over an unbounded set
of values. For PPT, we studied the same options as coreutils
when available, though PPT only supports a small subset of
coreutils’ options.

For the programs in the third group, we used the run-time
options—for httpd, the compile time options—we could get
working correctly. For example, we excluded httpd options
that caused compiler errors when we changed them. We
ignore options that can take arbitrary values, e.g., pylint
options that take a regexp or Python expression as input.

Most of the options we selected are boolean-valued, but
several range over a finite set of values, e.g., we consider
seven highlight options for formatting in pandoc and three
permission modes for modifying files in unison.

We used the same options for vsftpd and ngircd as Reisner
et al., to make a direct comparison possible.

Test Suites. We manually created tests for coreutils that
cover common command usage. For example, for cat, we
wrote tests that read a text file, a binary file, a non-existent
file, results piped from other commands, etc. We used the
same tests for coreutils and PPT.

For the third group of programs, test selection varied. For
httpd, hlint, pylint, and bibtex2html, we used the default tests.
For the remaining programs, we started from the default
tests (which were relatively limited) and added more tests
to cover basic functionality.

4. EVALUATION
We consider three research questions:

• R1 (correctness): Does iGen generate correct inter-
actions?

• R2 (efficiency): What are iGen’s performance char-
acteristics?

• R3 (analysis): What can we learn from inferred in-
teractions?

To investigate these questions, we applied iGen to the
subject programs described in Section 3. Table 2 summarizes
the results and reports the medians across 21 runs and their
variance2 as the semi-interquartile range (SIQR). For each

2Recall from Section 2 that iGen uses randomness, so differ-
ent runs may produce slightly different results.

https://bitbucket.org/nguyenthanhvuh/igen
https://bitbucket.org/nguyenthanhvuh/igen

Table 2: iGen’s results for the benchmark programs shown in Table 1. Numbers in regular font are medians
across 21 runs. Numbers in small font are semi-interquartile ranges measuring variance among the runs.

time (s) interactions
prog configs cov search total conj disj mix total
id 157 5 138 0 18 1 34 3 23 0 1 0 1 0 25 0

uname 95 5 87 0 9 1 15 1 16 0 2 0 7 1 25 1

cat 131 6 204 0 15 1 42 5 18 0 1 0 6 0 25 0

mv 106 9 172 0 9 1 38 2 16 0 1 0 1 0 18 0

ln 213 18 162 0 32 4 96 13 20 0 1 0 5 0 26 0

date 680 44 127 0 97 15 350 94 11 0 1 0 2 0 14 0

join 323 21 382 0 77 9 158 25 28 0 6 0 8 1 32 1

sort 1346 68 1083 0 2003 322 3113 379 78 1 2 0 13 1 93 2

ls 2175 250 1034 0 5091 823 9837 1887 109 0 2 1 8 0 120 0

p-id 82 2 73 0 5 0 283 7 9 0 0 0 0 0 9 0

p-uname 28 0 19 0 1 0 62 1 1 0 5 0 0 0 6 0

p-cat 26 1 30 0 1 0 246 11 3 0 1 0 0 0 4 0

p-ln 4 0 36 0 0 0 42 0 3 0 0 0 0 0 3 0

p-date 160 0 40 0 5 0 2061 159 5 0 0 0 0 0 5 0

p-join 111 21 114 0 8 2 1573 267 12 0 3 0 2 1 17 1

p-sort 116 5 191 0 11 1 3947 167 18 0 1 0 7 0 26 0

p-ls 272 11 216 0 52 2 13 803 842 25 0 1 0 3 0 29 0

cloc 210 9 972 0 67 5 5017 456 21 0 2 0 13 0 36 0

ack 1347 42 867 0 1962 88 23 127 999 53 1 1 0 5 0 59 1

grin 242 28 331 0 35 6 411 51 9 0 0 0 9 0 18 0

pylint 1916 143 5712 0 5637 536 27 175 2553 54 5 1 0 17 5 72 1

hlint 328 18 6757 0 4365 28 9525 761 22 0 1 0 12 0 35 0

pandoc 653 56 31 635 0 2284 451 23 515 2231 83 0 7 0 12 1 102 1

unison 381 27 3784 0 383 38 4641 341 36 0 1 0 13 1 50 1

bibtex2html 670 118 1345 0 369 90 667 136 90 0 0 0 15 0 105 0

gzip 495 27 1635 0 251 29 12 029 486 27 3 5 0 11 3 43 6

httpd 838 114 10 633 1 3596 777 197 390 30012 104 3 0 0 9 6 113 3

vsftpd 620 38 2549 0 628 125 652 126 42 0 3 0 4 0 49 0

ngircd 650 46 3090 0 820 88 1469 125 34 0 3 0 9 0 46 0

program, columns configs and cov show the number of con-
figurations iGen created and the number of locations covered
by these configurations, respectively. The next two columns
show iGen’s running time in seconds: total is the total time
and search is the time excluding the time to run the test
suite. The remaining columns list the number of inferred in-
teractions, divided into conjunctive (conj), disjunctive (disj),
and mixed interactions (mix), with the cumulative sum on
the right (total). The low SIQR for inferred coverage and
interactions indicate iGen produces relatively stable output
across runs.

4.1 RQ1: Correctness

Exhaustive Runs. To measure the correctness of the in-
ferred interactions, we first evaluated whether iGen produces
the same results with its iterative algorithm as it could pro-
duce if it used all configurations. Recall from Section 2
that running iGen with all configurations is guaranteed to
find correct interactions if they match our templates, so this
essentially gives us ground truth with respect to the test
suite.

To perform this evaluation, we selected the fourteen pro-
grams with the smallest configuration spaces and ran one
loop of iGen with configs (Figure 1) initialized to the set of
all configurations. We also used exhaustive symbolic execu-

Table 3: Comparing iGen to exhaustive runs.
prog δ cov f-score
id 0 0.98
uname 0 0.97
cat 0 1.00
mv 0 0.94
ln 0 0.99
date 0 0.94
join -1 0.99

vsftpd 0 0.997

prog δ cov f-score
p-id 0 0.97
p-uname 0 1.00
p-cat 0 1.00
p-ln 0 1.00
p-date -2 0.35
p-join 0 0.77
p-sort 0 1.00

ngircd 0 0.92

tion information for vsftpd and ngircd [22] to simulate iGen
running with all configurations of those programs.

Table 3 shows these comparisons. The second column δ cov
reports the differences between the number of lines covered by
iGen’s regular runs and those covered by the exhaustive runs.
Overall we see iGen generates interactions with coverage very
similar to the exhaustive runs. In total, iGen missed one line
in join and two lines in p-date. We investigated and found
these three uncovered lines are guarded by long conjunctive
interactions. For example, iGen missed join.c:997, which is
guarded by an interaction with 10 conjuncts.

Column f-score measures the accuracy of iGen’s runs com-
pared to the exhaustive runs using a balanced f-score [23],

which ranges between 0 and 1, with 1 representing perfect
agreement. In more detail, the f-score is based on comparing
for every location whether settings in the interaction for that
location match between the standard and exhaustive runs.
Notice this is a very strict test.

Table 3 shows that iGen generates mostly the same in-
teractions for most programs as the exhaustive runs. We
investigated the two outliers, p-date and p-join, and found
the low f-scores are due to two factors. First, these programs
have few interactions (5 for p-date and 17 for p-join), so a few
differences cause a large score change. Second, iGen almost
but does not quite infer the right interactions, which still
results in an f-score penalty. For example, for p-date, instead
of inferring the (correct) interaction G∧ d∧ (¬R∨¬iso8601),
iGen infers the less precise interaction G ∧ d. Similar near-
matches account for most of the f-score differences of the
remaining programs, e.g., in ngircd, iGen generates several
mixed interactions where it should generate conjunctive in-
teractions.

Manual Inspection. We also manually analyzed the pro-
gram source code to make sure certain interesting or non-
obvious interactions generated by iGen are correct. We fo-
cused on coreutils because these programs are small enough
for careful manual inspection and they allow for interesting
comparisons to PPT.

For p-uname, iGen discovers an interaction a ∨m covering
the line uname.pl:27, which prints the machine name. This
interaction thus specifies (correctly) that the machine name is
printed when given either option a or m. iGen also discovers
other similar interactions for p-uname, including a∨ o, which
prints the operating system name, a∨n to print the hostname,
etc. For the corresponding uname command iGen found
similar but longer interactions such as (¬help ∧ ¬verbose) ∧
(a ∨ m), which prints the machine name but only when
help and verbose are not given (note these options are not
supported by PPT). We refer to options like help as enabling
options [22, 27], since they must be set a certain way to
achieve significant coverage. Notice also that this is a mixed
interaction, which cannot be inferred by our prior work.

Another interesting interaction iGen found is (¬A ∧ ¬t ∧
¬T) ∧ (e ∨ v) covering line cat.c:462 of cat. Reviewing the
source code, we found this line is only executed when the
global variables showtab and shownonprinting are false and
true, respectively. Further examination reveals that showtab
is false by default but any of options A, t, or T cause it to be
true; thus all of these options must not be given to cover the
considered line. Moreover, shownonprinting is only true when
either e, t, v, or A set; thus one of these options must be
given to cover the considered line. Putting this logic together
and simplifying yields the interaction iGen discovered.

We were surprised that for uname, iGen generates a purely
conjunctive interaction containing the negation of all options.
Inspection of the source code reveals this is correct—one line
of code is only invoked when no options are given. Interest-
ingly, p-uname does not have this interaction, and indeed
does not behave as uname when run with no options.

Finally, we investigated the cases of non-zero SIQRs in
Table 2 and found that most differences involve disjunctions.
For example, 13 of 21 uname runs found the interaction
a ∨ s ∨ n ∨ r ∨ v ∨ m ∨ p ∨ i ∨ o ∨ help ∨ version by taking a
shorter conjunctive interaction, e.g., i∧¬a∧¬help∧¬version;
modifying its settings, yielding, among others, ¬i∧¬a∧¬help∧

0 0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

0.8

1

iterations (normalized)

f-
sc

or
e

id
uname

cat
mv

ln

date

join

Figure 3: Progress of iGen on generating interac-
tions for GNU coreutils programs.

¬version; and randomly assigning remaining options to get
¬a∧¬s∧¬n∧¬r∧¬v∧¬m∧¬p∧¬i∧¬o∧¬help∧¬version, which
is then negated. While iGen performs random assignment for
many different short interactions, the chance of getting that
exact conjunction are still low overall—and in 8 of 21 uname
runs, iGen misses that interaction. In general, non-zero
SIQRs arise from lower probability events like this.

4.2 RQ2: Performance
Table 2 shows that for most programs, iGen’s running

time is dominated by running the test suite. Thus, programs
with larger configuration spaces tend to take longer because
iGen has to create more configurations to analyze these pro-
grams. Nonetheless, comparing to Table 1, we see that iGen
scales well to large programs because it only explores a small
fraction of the total possible number of configurations. Inter-
estingly, Table 2 shows the number of explored configurations
is not directly proportional to the configuration space size.
For example, ls has eight orders of magnitude more possible
configurations than sort, but iGen only explores 1.5× more
configurations.

We believe that iGen represents a good trade-off between
correctness and efficiency compared to previous work. On
the one hand, iGen generates more configurations (and hence
is slower) than iTree. For vsftpd and ngircd, iGen generates
620 and 650 configurations, respectively, while iTree creates
around 100 configurations each [27]. However, iGen generates
much more precise interaction information—iTree reports
only 4 interactions for vsftpd and 3 interactions for ngircd,
compared to iGen’s 49 and 46 interactions, respectively.

On the other hand, iGen runs dramatically faster than
the experiments by Reisner et al. [22], which took two weeks
to analyze just a few programs using a specialized cluster.
Moreover, although iGen is not guaranteed to produce precise
interactions, the results discussed in Section 4.1 suggest iGen
is as precise as Reisner et al.’s work in practice.

Convergence. Figure 3 shows how iGen converges to its
final results on a subset of coreutils. The x-axis is the itera-
tion count (normalized such that 1 represents all iterations
for that particular program), and the y-axis is the f-score
compared to the exhaustive runs. These results show that
iGen converges fairly quickly. After approximately 20% of

Table 4: Comparing random search to exhaustive
runs.

prog δ cov f-score
id -3 0.85
uname -1 0.83
cat -1 0.93
mv 0 0.58
ln -4 0.76
date -4 0.51
join -17 0.82

vsftpd -356 0.58

prog δ cov f-score
p-id -2 0.88
p-uname 0 0.94
p-cat -1 0.93
p-ln 0 1.00
p-date -2 0.33
p-join -6 0.70
p-sort -2 0.90

ngircd -1289 0.27

the iterations, iGen’s f-score has reached 0.8 or more. This
suggests an iGen user could potential cut off iteration early
and still achieve reasonable results.

iGen’s convergence relies critically on genNewConfigs (Fig-
ure 1 line 18) generating useful configurations. Table 4
demonstrates this by showing iGen runs on randomly se-
lected configurations. More specifically, for each program in
Table 3, we generated the same number of random configu-
rations as the number of configurations iGen used (Table 2).
We also include the default configuration, if it exists. We next
ran the iGen main loop once on these configurations to com-
pute the results, and then compared coverage information
and f-score to the exhaustive runs.

Comparing to Table 3, we see iGen generates much more
precise interactions and has better coverage than random
search. The differences are most significant for larger pro-
grams, e.g., the most extreme case is ngircd, where random
search has f-score 0.27 and covers 1289 fewer lines than ex-
haustive run, while iGen has f-score 0.92 and has the same
coverage as the exhaustive run.

4.3 RQ3: Analysis
We analyzed iGen’s results in detail to learn interesting

properties of the subject programs. In the following, an
interaction’s length is the number of options it contains.3

Disjunctive and Mixed Interactions. We observe that many
programs require non-conjunctive interactions. Table 2 shows
that approximately 20% of the inferred interactions are dis-
junctions or mixed interactions. Furthermore, the analysis
in Section 4.1 shows that mixed interactions, though rare, do
exist in real-world software. Thus, these interactions, which
were omitted from prior work [22,26,27], are important.

Interaction Length and Coverage. In prior work we ob-
served that the total number of interactions found is far
fewer than the number of possible interactions [26,27]. We
observe the same trend in Table 2. For example, p-cat has 7
binary options, yielding 128 possible configurations and at
least 4373 possible interactions. However, iGen finds four
interactions, which is less than 0.1% of 4373. The same trend
can be seen throughout the table.

We also observed in prior work that longer conjunctive
interactions tend to contain shorter conjunctive interactions,

3It is more typical to refer to this as the strength of an inter-
action. However, in our setting, longer conjunctive formulae
are logically stronger than shorter conjunctive formulae, but
longer disjunctive formulae are logically weaker than shorter
disjunctive formulae. Hence we use length to avoid confusion.

e.g., if a ∧ b ∧ c ∧ d ∧ e is an interaction, it is likely that a
shorter formula like a ∧ b is an interaction [22]. We manually
examined iGen’s interactions and found that this pattern
also holds. For most programs, conjunctive interactions of
length at least three include a shorter interaction. This is
likely due to nested guards, e.g., such as the interaction on
L5 of Figure 2, but with a non-disjunctive inner condition.

Table 5 looks at the interactions in more detail by showing
the number of interactions iGen infers and the covered lines
at each interaction length. The last column (max) reports
the length of the longest interaction. We observe that the
maximum interaction length for most programs is signif-
icantly smaller than the number of configuration options.
However, there are five programs—id, uname, cat, p-join, and
httpd—that have interactions that include all options. (We
discussed the uname case in Section 4.1.)

Although some non-trivial coverage is achieved by large
interactions (e.g., conjunctions of all options), 87% of the
coverage is obtained by interactions of length less than three.
These observations are similar to our prior work [22,26,27].

One exceptional case is ack, in which most coverage is
achieved by large interactions. Investigating further, we
found ack has many options that must be disabled for most
of its functionality to be exercised.

Enabling Options. In addition to the enabling option help
mentioned for uname, and the enabling options just men-
tioned for ack, we found many other examples of enabling
options, including the following. For id, option Z must be
disabled for most coverage (because that option is only appli-
cable to a secured Linux kernel). For httpd, option –enable-
http must be enabled for almost all coverage, and –enable-so
(which allows for shared modules) must be enabled for a
majority of the coverage. For vsftpd, disabling ssl and local,
and enabling anon, are important to coverage. Finally, for
ngircd, options ListenIPv4 and Conf PredefChannelsOnly are
important to coverage.

Notice these results depend on the test suite and environ-
ment. For example, an enabled option Z for id could be useful
on a secured kernel, and ssl for vsftpd can be enabled when
running with SSL certificates. This shows how iGen naturally
adapts the inferred interactions to the current setting.

Minimal Covering Configurations. Finally, we used in-
ferred interactions to compute a minimal set of configurations
that achieve the full coverage found by iGen. To do so, we
used the following greedy algorithm. Given a set of inter-
actions, we first remove any interactions implied by others.
For example, if x ∧ y and x are interactions, we remove x,
because a configuration satisfying x ∧ y will also satisfy x.
Next, we randomly conjoin interactions whose conjunction
is satisfiable, e.g., we combine x ∧ y and z ∨ w to yield
x ∧ y ∧ (z ∨ w). This operation is greedy because it
tries to combine as many compatible interactions as possible.
Finally, we generate configurations that are compatible with
the combined interactions, thus producing a small set of con-
figurations that covers the same locations as the interactions.
Note that this algorithm may not produce an optimal result,
but in practice it is effective.

Table 6 summarizes the results. For each program we list
the full configuration space (from Table 1) and the size of
the minimal configuration set computed with our algorithm
(again the coverage of these sets are similar as those as shown

Table 5: Number of interactions and covered lines per interaction length. Results are medians of 21 runs.
prog 0 1 2 3 4 5 6 7 8 9 10+ max
id 1 15 2 3 7 29 2 29 2 10 1 1 5 14 1 2 1 1 2 33 1 1 10
uname 1 10 10 32 2 32 - - 9 11 - - - - - - - - - - 2 2 11
cat 1 16 11 42 2 35 - - 2 13 1 1 1 22 2 3 1 1 - - 4 71 12
mv 1 51 9 36 3 53 3 11 1 1 1 21 - - - - - - - - - - 5
ln 1 12 10 44 3 38 1 1 4 54 3 7 2 3 2 3 - - - - - - 7
date 1 14 3 9 3 89 3 9 - - - - 4 6 - - - - - - - - 6
join 1 21 10 66 7 197 10 51 6 28 5 10 1 6 1 3 - - - - - - 7
sort 1 82 11 25 4 183 18 70 6 82 7 344 13 92 4 48 3 11 2 3 21 87 15
ls 1 51 46 160 3 187 11 317 22 164 13 62 9 25 5 29 2 8 1 - 13 26 47

p-id 1 7 1 11 - - - - - - 5 53 2 2 - - - - - - - - 6
p-uname 1 14 - - 5 5 - - - - - - - - - - - - - - - - 2
p-cat 1 23 2 4 - - 1 3 - - - - - - - - - - - - - - 3
p-ln 1 34 2 2 - - - - - - - - - - - - - - - - - - 1
p-date 1 8 4 32 - - - - - - - - - - - - - - - - - - 1
p-join 1 59 10 32 2 6 - - - - 1 7 - - - - - - - - 1 4 10
p-sort 1 42 6 43 6 34 2 8 3 49 5 9 2 4 1 2 - - - - - - 7
p-ls 1 124 7 49 9 25 2 4 3 5 5 7 2 2 - - - - - - - - 6

cloc 1 190 4 567 11 124 7 50 8 29 1 1 4 11 - - - - - - - - 6
ack 1 105 1 2 2 7 2 17 2 14 2 57 1 36 2 48 4 52 6 57 34 464 15
grin 1 105 2 73 5 112 0 0 3 11 3 23 3 5 1 2 - - - - - - 7
pylint 1 2062 1 4 3 44 5 39 2 101 6 348 15 1602 18 1436 13 62 6 12 - - 9
hlint 1 288 1 13 2 2270 4 150 8 324 10 2978 3 61 3 8 2 641 1 24 - - 9
pandoc 1 27 788 60 2674 25 1065 10 86 2 9 1 2 1 1 - - - - 1 1 - - 5
unison 1 983 3 1970 16 579 12 137 14 102 3 10 1 1 - - - - - - - - 6
bibtex2html 1 372 35 419 6 149 19 143 16 150 22 90 5 19 - - - - - - - - 6
gzip 1 103 2 9 4 182 6 370 5 206 4 86 4 12 3 19 2 28 1 1 7 47 17
httpd 1 104 1 708 39 5524 46 3765 13 370 4 40 3 90 1 4 - - - - 50 1 50

vsftpd 1 336 4 101 6 170 4 1373 18 410 8 114 6 35 2 10 - - - - - - 7
ngircd 1 748 3 460 4 525 16 827 14 457 6 68 1 2 - - - - - - - - 6

Table 6: Using iGen’s interactions to compute mini-
mal covering configurations.

min
prog cspace cspace
id 1024 10
uname 2048 4
cat 4096 6
mv 5120 4
ln 10 240 7
date 17 280 7
join 18 432 7
sort 6 291 456 17
ls 3.5×1014 15

p-id 256 7
p-uname 64 1
p-cat 128 1
p-ln 4 1
p-date 3360 3
p-join 4608 4

min
prog cspace cspace
p-sort 2048 6
p-ls 6.7×107 10
cloc 524 288 6
ack 4.3×109 13
grin 2 097 152 6
pylint 5.8×1010 11
hlint 8192 5
pandoc 4.0×109 5
unison 393 216 7
bibtex2html 1.2×109 8
gzip 131 072 10
httpd 1.1×1015 5

vsftpd 2.1×109 6
ngircd 29 764 6

in Table 2). Our results show that the minimal configuration
set is dramatically smaller than the full configuration space.
In prior work, we found similar results: We constructed a
minimal line covering set of 5 configurations for vsftpd and
7 for ngricd [22]. We believe the small differences between
those results and Table 6 are due to iGen supporting richer
interactions and randomness in the greedy algorithm.

4.4 Threats to Validity
Like any empirical study, our conclusions are limited by

potential threats to validity. As a result our findings may
not generalize in certain ways or to certain systems.

In this work we examined several subject systems, covering
a range of different sizes, from 25 to 238k lines of code, written
in five different languages. Although each of these systems is
realistic and widely used, the whole set of systems represents
only a sample of all possible software systems. In addition,
we focused on subsets of configuration options; the number
of options was substantial, but we did not include every
possible option, as discussed earlier.

Another potential threat is that iGen relies on running
test suites to draw its conclusions. The test sets we used
have reasonable, but not complete, coverage. Individually,
the test cases tend to focus on specific functionality, rather
than combining multiple activities in a single test case. In
that sense they are more like a typical regression suite than
a customer acceptance suite. Systems whose test suites are
less (or more) complete could have different results.

Finally, iGen misses interactions that are not in one of the
forms discussed in Section 2. However, from Table 2 we see
that interactions with disjunctions are much less common
than those solely composed of conjunctions. Hence we spec-
ulate even more complex interaction forms are uncommon.

We intend to explore each of these issues in future studies.

5. RELATED WORK
There are several threads of related work.

Interaction Discovery. As discussed earlier, Reisner et
al. [22] use the symbolic executor Otter to fully explore
the configuration space of a software system and extract
interactions from the resulting information. In that work, in-
teractions were limited to conjunctions, while iGen supports
much richer interaction templates. Moreover, while symbolic

execution is powerful, it suffers major limitations. First,
experience shows it has limited scalability. For example, the
Otter experiments required several days on a large cluster
and analyzed only a few programs. In contrast, Table 2 shows
that iGen is much more efficient. Second, symbolic executors
are language-specific, e.g., Otter could not be applied to C++
or Haskell. In contrast, the only language-specific tools iGen
relies on are code coverage tools, which are easy to use and
widely available for many languages. Finally, symbolic execu-
tion is very hard to apply to programs that use frameworks,
libraries, and/or native code. Typically symbolic execution
users must replace these parts of a system with painstakingly
developed “stub” code that implements the functionality in
a more symbolic executor-friendly way. Needless to say this
process is time-consuming, error-prone, and hard to maintain
as systems evolve.

As also discussed earlier, to address some limitations of
Otter we developed iTree [27], which uses dynamic anal-
ysis and machine learning techniques to generate a set of
configurations that achieve high coverage. iTree works by
constructing an “interaction tree,” where each node of the
tree is a formula, and conjoining the formulae on a path from
the root to a node yields a potential interaction. However,
while iTree does infer some interactions, its main goal is to
achieve high coverage. As a result, as we saw in Section 4.2,
iTree does not actually infer very many, or very useful, in-
teractions. Moreover, as with Otter, iTree’s interactions are
limited to conjunctions, although iTree has some support for
membership-like constraints to improve efficiency.

Feature Interactions and Presence Conditions. The con-
cepts of feature interactions and presence conditions are
similar to our use of interactions. Thüm et al [29] classify
problems in software product line research and surveys ex-
isting static analysis to solve them. Our use of interactions
belongs to the feature-based classification, and we propose
a new dynamic analysis to generate them. Apel et al [1]
study the number of feature interactions in a system and
their effects, including bug triggering, power consumption,
etc. Our work complements these results by studying in-
teractions that affect line or expression coverage. Lillack
et al [15] use (language-specific) taint analysis to find inter-
actions in Android applications. In contrast, iGen uses a
dynamic analysis that is language agnostic (but potentially
unsound). Nadi et al [17] and von Rhein et al [30] propose
tools that work with presence conditions that are already
provided. In contrast, iGen discovers interactions. Czarnecki
and Pietroszek [8] check for well-formness errors in UML
featured-based model templates using an SAT solver. We
intend to explore SMT-based techniques to verify correctness
of iGen’s inferred interactions.

Combinatorial Interaction Testing. Many researchers have
explored combinatorial interaction testing (CIT) [5,19,28],
a family of techniques for testing a program under a sys-
tematically generated set of configurations. One particularly
popular approach is called t-way covering arrays, which,
given an interaction strength t, generate a set of configura-
tions containing all t-way combinations of option settings at
least once. Over last 30 years, many studies have focused
on improving the speed, quality and flexibility of covering
arrays [4, 6, 10, 31, 32]. However, as pointed out in Fouche
et al. [13], because developers must choose t a priori and

because generating covering arrays quite expensive, devel-
opers will often set t to be small, causing higher strength
interactions to be ignored.

Invariant Generation. Interactions can also be considered
invariants that hold at particular locations, i.e., specific
option must have specific settings whenever execution reaches
that location. Thus, iGen can be seen as a likely invariant
generator that works for one particular class of invariants,
those restricted to configuration options and with specific
forms (quantifier-free expressions involving only equalities
and certain conjunctions and disjunctions).

Other researchers have proposed general-purpose invariant
generators. Daikon [12] is a well-known dynamic invariant
generation system that works by hypothesizing many po-
tential invariants and then using run-time monitoring to
eliminate those that do not hold. Daikon includes a large
list of invariant templates. DIG is a more recent invariant
generator that supports more expressive invariants including
nonlinear arithmetic, disjunctive polynomials, and relations
among arrays [18]. DySy is another invariant generator that
uses symbolic execution for invariant inference [7].

iGen differs from Daikon, DIG, and DySy in three main
ways. First, iGen can compute potentially long disjunctive
invariants very efficiently (via pointwise union and nega-
tion). In contrast, Daikon requires users to provide “split-
ting” conditions [11] to find disjunctive invariants such as
“if c then a else b”, and DIG uses complex and expensive-
to-compute convex hulls to represent disjunctions. DySy
is bounded by the limitations of symbolic execution —the
language-specificity and the difficult of analyzing frameworks,
libraries, and native code. Second, Daikon, DIG, and DySy
do not attempt to search for more executions to refine in-
variants. Finally, iGen tries to find interactions for every
location, while previous work only considers specific loca-
tions (e.g., loops and function entrance and exit) to reduce
run-time overhead.

6. CONCLUSION
We presented iGen, a new, lightweight approach to infer

interactions, which are formulae that describe the configu-
rations covering a location. iGen discovers interactions by
running the subject program under a set of configurations
to determine coverage information; computing the pointwise
union of various sets of covering and non-covering configura-
tions; and then combining the resulting formulae to produce
an interaction. iGen repeats this process, iteratively refining
the set of configurations, until no new coverage is achieved
and no new interactions are produced. We applied iGen to
29 programs written in five different languages and demon-
strated that iGen infers precise interactions; it does so using
a small fraction of the number of possible configurations;
iGen confirms several observations made by prior work; and
the disjunctive and mixed interactions inferred by iGen oc-
cur with nontrivial frequency. We believe iGen takes an
important step forward in the practical understanding of
configurable systems.

7. ACKNOWLEDGMENTS
We thank the anonymous reviewers for their many helpful

comments. This research was supported in part by NSF
CCF-1116740, CCF-1139021, and CCF-1319666.

8. REFERENCES
[1] S. Apel, S. Kolesnikov, N. Siegmund, C. Kästner, and

B. Garvin. Exploring feature interactions in the wild:
the new feature-interaction challenge. In International
Workshop on Feature-Oriented Software Development,
pages 1–8. ACM, 2013.

[2] T. Berger, S. She, R. Lotufo, A. W ↪asowski, and
K. Czarnecki. Variability modeling in the real: A
perspective from the operating systems domain. In
International Conference on Automated Software
Engineering, pages 73–82. ACM, 2010.

[3] Bisect; coverage tool for OCaml. http://bisect.x9c.fr,
accessed on 2016-03-07.

[4] R. C. Bryce and C. J. Colbourn. Prioritized interaction
testing for pair-wise coverage with seeding and
constraints. Information and Software Technology,
48(10):960–970, 2006.

[5] D. M. Cohen, S. R. Dalal, J. Parelius, and G. C. Patton.
The combinatorial design approach to automatic test
generation. IEEE Software, 13(5):83–88, 1996.

[6] M. B. Cohen, P. B. Gibbons, W. B. Mugridge, and
C. J. Colbourn. Constructing test suites for interaction
testing. In International Conference on Software
Engineering, pages 38–48. IEEE, 2003.

[7] C. Csallner, N. Tillmann, and Y. Smaragdakis. Dysy:
Dynamic symbolic execution for invariant inference. In
International Conference on Software Engineering,
pages 281–290. ACM, 2008.

[8] K. Czarnecki and K. Pietroszek. Verifying
feature-based model templates against well-formedness
ocl constraints. In International Conference on
Generative Programming and Component Engineering,
pages 211–220. ACM, 2006.

[9] L. De Moura and N. Bjørner. Z3: An efficient SMT
solver. In Internal Conference on Tools and Algorithms
for the Construction and Analysis of Systems, pages
337–340. Springer, 2008.

[10] G. Demiroz and C. Yilmaz. Cost-aware combinatorial
interaction testing. In International Conference on
Advances in System Testing and Validation Lifecycle,
Nov. 2012.

[11] M. D. Ernst, W. G. Griswold, Y. Kataoka, and
D. Notkin. Dynamically discovering program invariants
involving collections. Technical report, University of
Washington, 2000.

[12] M. D. Ernst, J. H. Perkins, P. J. Guo, S. McCamant,
C. Pacheco, M. S. Tschantz, and C. Xiao. The Daikon
system for dynamic detection of likely invariants.
Science of Computer Programming, pages 35–45, 2007.

[13] S. Fouché, M. B. Cohen, and A. Porter. Incremental
covering array failure characterization in large
configuration spaces. In International Symposium on
Software Testing and Analysis, pages 177–188, 2009.

[14] Hpc; coverate tool for Haskell.
https://wiki.haskell.org/Haskell program coverage,
accessed on 2016-03-07.

[15] M. Lillack, C. Kästner, and E. Bodden. Tracking
load-time configuration options. In International
Conference on Automated Software Engineering, pages
445–456. ACM, 2014.

[16] MDevel:Cover; coverage tool for Perl.

http://search.cpan.org/ pjcj/Devel-Cover-
1.20/lib/Devel/Cover.pm, accessed on
2016-03-07.

[17] S. Nadi, T. Berger, C. Kastner, and K. Czarnecki.
Where do configuration constraints stem from? an
extraction approach and an empirical study.
Transactions on Software Engineering, 41(8):820–841,
2015.

[18] T. Nguyen, D. Kapur, W. Weimer, and S. Forrest. DIG:
a dynamic invariant generator for polynomial and array
invariants. Transactions on Software Engineering and
Methodology, 23(4):30, 2014.

[19] C. Nie and H. Leung. A survey of combinatorial testing.
ACM Computing Surveys, 43(2):11, 2011.

[20] Perl Power Tools. http://perlpowertools.com, accessed
on 2016-03-07.

[21] Coverage tool for Python.
https://wiki.python.org/moin/CodeCoverage, accessed
on 2016-03-07.

[22] E. Reisner, C. Song, K.-K. Ma, J. S. Foster, and
A. Porter. Using symbolic evaluation to understand
behavior in configurable software systems. In
International Conference on Software Engineering,
pages 445–454. ACM, 2010.

[23] V. Rijsbergen. Cj information retrieval. 1979.

[24] S. She, R. Lotufo, T. Berger, A. W ↪asowski, and
K. Czarnecki. Reverse engineering feature models. In
International Conference on Software Engineering,
pages 461–470. ACM, 2011.

[25] SLOCCount. http://www.dwheeler.com/sloccount,
accessed on 2015-03-07.

[26] C. Song, A. Porter, and J. S. Foster. iTree: Efficiently
Discovering High-Coverage Configurations Using
Interaction Trees. In International Conference on
Software Engineering, pages 903–913, Zurich,
Switzerland, June 2012.

[27] C. Song, A. Porter, and J. S. Foster. iTree: efficiently
discovering high-coverage configurations using
interaction trees. Transactions on Software Engineering,
40(3):251–265, 2014.

[28] K.-C. Tai and Y. Lie. A test generation strategy for
pairwise testing. Transactions on Software Engineering,
28(1):109–111, 2002.

[29] T. Thüm, S. Apel, C. Kästner, M. Kuhlemann,
I. Schaefer, and G. Saake. Analysis strategies for
software product lines. School of Computer Science,
University of Magdeburg, Tech. Rep. FIN-004-2012,
2012.

[30] A. Von Rhein, A. Grebhahn, S. Apel, N. Siegmund,
D. Beyer, and T. Berger. Presence-condition
simplification in highly configurable systems. In
International Conference on Software Engineering,
pages 178–188. IEEE Press, 2015.

[31] C. Yilmaz, M. B. Cohen, A. Porter, et al. Covering
arrays for efficient fault characterization in complex
configuration spaces. Transactions on Software
Engineering, 32(1):20–34, 2006.

[32] X. Yuan, M. B. Cohen, and A. M. Memon. GUI
interaction testing: Incorporating event context.
Transactions on Software Engineering, 37(4):559–574,
2011.

	Introduction
	iGen Algorithm
	Subject Programs
	Evaluation
	RQ1: Correctness
	RQ2: Performance
	RQ3: Analysis
	Threats to Validity

	Related Work
	Conclusion
	ACKNOWLEDGMENTS
	References

