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A key challenge in program synthesis is synthesizing programs that use libraries, which most real-world
software does. The current state of the art is to model libraries with mock library implementations that
perform the same function in a simpler way. However, mocks may still be large and complex, and must include
many implementation details, both of which could limit synthesis performance. To address this problem, we
introduce JLibSketch, a Java program synthesis tool that allows library behavior to be described with algebraic
specifications, which are rewrite rules for sequences of method calls, e.g., encryption followed by decryption
(with the same key) is the identity. JLibSketch implements rewrite rules by compiling JLibSketch problems
into problems for the Sketch program synthesis tool. More specifically, after compilation, library calls are
represented by abstract data types (ADTs), and rewrite rules manipulate those ADTs. We formalize compilation
and prove it sound and complete if the rewrite rules are ordered and non-unifiable. We evaluated JLibSketch
by using it to synthesize nine programs that use libraries from three domains: data structures, cryptography,
and file systems. We found that algebraic specifications are, on average, about half the size of mocks. We
also found that algebraic specifications perform better than mocks on seven of the nine programs, sometimes
significantly so, and perform equally well on the last two programs. Thus, we believe that JLibSketch takes an
important step toward synthesis of programs that use libraries.
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1 INTRODUCTION

In recent years, there has been tremendous progress on sketch-based program synthesis, which,
given a partial program (or sketch) containing some unknowns, solves for those unknowns so the
resulting program satisfies its assertions [Solar-Lezama 2013; Solar-Lezama et al. 2006].
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Sketch-based synthesis allows users to leverage knowledge about the structure of the desired
program to reduce the program search space. This technique has been used effectively for a wide
variety of synthesis problems, including synthesizing Java framework models [Jeon et al. 2016],
generating automated feedback for introductory Python assignments [Singh et al. 2013], and
providing social media recommendations [Cheung et al. 2012] among others [Bornholt and Torlak
2017; Bornholt et al. 2016; Cardelli et al. 2017; D’Antoni et al. 2016; Hua and Khurshid 2017; Raabe
and Bodik 2009; Solar-Lezama et al. 2007, 2008, 2006; Torlak and Bodik 2014; Wang et al. 2017].

While sketch-based synthesis has come a long way, a major remaining challenge is synthesizing
programs that use libraries, which is common in most real-world software. One possible approach
is to inline the library source code into the sketch, but this is untenable in practice: library code is
large and complex—yielding synthesis problems that are too big to solve—and may include native
code, which the synthesizer cannot reason about.

Instead, a more effective approach is to develop mock libraries (or just mocks), written in the
sketch language, that implement essential library functionality in a simpler way [Jeon et al. 2016;
van der Merwe et al. 2015]. However, in practice mocks can be sizable, and they include many
implementation details the synthesizer must reason about. As a result, good synthesis performance
can be hard to achieve with mocks.

To address this problem, we introduce JLibSketch !, a novel Java program synthesis tool in
which libraries can be described with algebraic specifications. We express these specifications as
rewrite rules of the form pattern = result. For example, we can partially specify a cryptography
library with the rule decrypt(encrypt(m, k), k) = m, meaning encryption followed by decryption
with the same key is the identity. Notice this specification is both dramatically simpler than actual
encryption and decryption routines and easy to reason about.

Thus, the JLibSketch synthesis problem is to find a program that is correct for any library
satisfying the algebraic specifications and any program input. To solve such a problem, JLibSketch
builds on top of JSketch [Jeon et al. 2015b], a compiler from Java code with unknowns to the input
language of the Sketch [Solar-Lezama 2016] synthesis system. JLibSketch extends JSketch so that
the compiled code models library methods as constructing algebraic data types (ADTs) [Inala et al.
2017]. JLibSketch then compiles rewrite rules as Sketch code that manipulates those ADTs. In
this way, JLibSketch implements rewrite rules without requiring any modification to the solver.
Although our particular implementation is for Java, we believe the same approach can be used to
model libraries in other existing synthesis frameworks. (Section 2 gives an overview of JLibSketch.)

We formalize JLibSketch as a compilation from Sketch/!> a core Sketch language with built-in
support for algebraic specifications, to Sketchore, a core Sketch language without such support. We
prove that, if the rewriting rules are ordered and non-unifiable, then soundness and completeness
hold, i.e., the Sketch? program has a solution if and only if its compilation has a solution in
Sketch. (Section 3 presents our formalism.)

Our JLibSketch implementation extends JSketch’s surface syntax to include Java-like notation
for algebraic specifications. The implementation embeds its ADT-based representation of library
method calls inside JSketch’s object representation, so the two may be interchanged. Because
JSketch distinguishes primitives and arrays from objects (the former to match Java, the latter
for performance), JLibSketch also includes boxing and unboxing annotations to support library
methods that might evaluate to a primitive/array or might be represented with an ADT. (Section 4
discusses our implementation.)

We evaluated JLibSketch by algebraically specifying libraries from three domains: data structures,
cryptography, and file systems. We then used those specifications to synthesize three library client

Ihttps://github.com/bmarwritescode/oopsla-19-artifact

Proc. ACM Program. Lang., Vol. 3, No. OOPSLA, Article 132. Publication date: October 2019.


https://github.com/bmarwritescode/oopsla-19-artifact

Program Synthesis with Algebraic Library Specifications 132:3

programs from each domain, for a total of nine programs. We found that, in comparison to mocks
for the same libraries, algebraic specifications were, on average, 53% of the lines of code of mocks.
We also found that, for seven of the nine benchmarks, synthesis ran from 2X to more than 81x
faster with algebraic specifications than with mocks. In the other two cases, mocks and algebraic
specifications performed about the same. (Section 5 discusses our experiments.)

Thus, our results suggest that algebraic specifications provide a new, more succinct way of
describing libraries, and they can provide significant performance benefits compared to mocks. We
believe that JLibSketch takes an important step forward in making synthesis of programs that use
libraries more practical.

2 OVERVIEW

Background and Motivation. JLibSketch is built on top of JSketch [Jeon et al. 2015b], which
brings Sketch-based program synthesis to Java. Figure 1 illustrates some key features of JSketch,
which mimic corresponding Sketch features. Each JSketch program contains one or more harnesses,
which are partial programs that can contain three kinds of unknowns: holes, denoted by ??, which
represent integer or boolean constants; expression generators, denoted by {| e, ez, ... |}, which
represent a choice among the expressions described by the e;; and function generators, described
shortly. The goal of JSketch is to find an instantiation of the unknowns such that for all choices of
the harness’s parameters, its assertions are satisfied.

For example, Figure 1 shows a sample JSketch problem.
It begins with a function generator, lin, that describes
linear functions of its arguments x and y. More specif-
ically, the if statement (line 2) is guarded by a hole, and
thus the synthesizer can pick from one of two returns.
The first (line 2) uses an expression generator to select
among one of the arguments. The second (line 3) returns
the sum of two recursive calls to lin and an unknown
constant (i.e., a hole). When this generator is called, ei-
ther from elsewhere or recursively, JSketch replaces the Fig. 1. Simple JSketch problem.
call with a fresh copy of its body containing fresh holes
and generators. Thus, for example, a call of lin could expand to x, x+y+0, y+y+4, etc.

Next, the figure shows the harness main, which calls lin twice, generating two linear functions f
and g. The first assertion (line 7) checks that f(1,1) =g(1,1). The second assertion (line 8) checks that
f(a,b) # g(a,b) for all (a,b) # (1,1). Thus, when given this program, JSketch finds two instantiations of
lin (i.e., two linear functions) that are only equivalent on the input (1,1), such as f(x,y)=3x+4y+16 and
g(x,y)=2y+21. For more details of JSketch, see Jeon et al. [2015b].

While JSketch is promising, it is difficult to use it to synthesize programs that use libraries.
As a running example, in the remainder of this section we will consider one of our benchmarks,
SuffixArray. Part of this benchmark is to synthesize a method Irs, shown in Figure 2d. We will
discuss the details of this figure shortly. For now, we just observe that the code uses TreeSet (denoted
TS in the figure), a data structure from the Java standard library. Hence, the synthesizer needs to
know the semantics of TreeSet’s methods to solve this problem.

The most straightforward solution is to concatenate the TreeSet source code to the sketch, but
unfortunately that does not work. The standard TreeSet implementation is built on the TreeMap
library, which is over 3,000 lines of code and has dozens of dependencies—which would make the
problem too large to be solved—and includes native code—which JSketch does not understand.
Instead, we need to build a model of the library—a representation that is smaller, simpler, and
amenable to synthesis.

generator int lin (int x, int y){
if(??){ return {| x , y |} }

else{ return lin (x,y)+lin (x,y)+??; }
}
harness void main(int i, int j){

int f =lin(i,j), g=Ilin(i,j)

if (i ==18&&j==1) { assert f==g; }
else { assert f # g; }

v % N G oA W N =

}
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One approach to modeling is to write a mock implementation of TreeSet that avoids native code
and has fewer dependencies. While this can be effective, mocks could also be lengthy, reducing
synthesis performance, and writing mocks requires making a range of implementation choices that
could have unexpected consequences. For example, if we mocked TreeSet using an object array
rather than TreeMap, we would either have to bound the array size—limiting the applicability of the
mock—or implement dynamic resizing—which introduces extra complexity that can slow synthesis
performance (see Section 5.1 for a more detailed discussion of mocking TreeSet).

Algebraic Specifications using Rewrite Rules. JLibSketch aims to address this issue by extending
JSketch to support algebraic specifications [Henkel and Diwan 2003] for modelling libraries. For
example, Figure 2a gives a partial specification describing relationships among several methods of
TreeSet (abbreviated as TS), grouped inside an @rewriteClass (line 1). The annotations in this code,
beginning with @, are part of JLibSketch. The specification begins with type signatures, labeled
with @alg, for the methods (lines 2-5). Since contains and size do not mutate the receiver, we further
annotate them as @pure. Next, we define six rewrite rules, which pattern match combinations
of method calls and return a new expression to which that pattern should be rewritten. For
compactness, the rules in the figure omit type annotations, which are straightforward but verbose.

The first three rules describe the behavior of size. The first rule (line 7) states that the size of an
empty TreeSet is zero. Here the pattern is TreeSet(), which is the nullary constructor for the class,
i.e., this rule says (new TreeSet()).size() == 0. Notice that in these specifications, we write the receiver
as the first method argument, whereas in Java the receiver is written to the left of the method name
and is referred to in the method body as this.

Similarly, the second rewrite rule states that the size of a cleared TreeSet is 0 (line 9). The third
rewrite rule (lines 11-14) states that adding an element to a TreeSet increases the size by one if that
element is not already in the set. Since add mutates its receiver (it is not @pure), JLibSketch creates
two pattern constructors for the method. The constructor add represents the normal return value,
and the constructor add! represents the mutated TreeSet after the call.

The last three rewrite rules describe the behavior of contains. The first rule (lines 16-18) states that
no element is contained in an empty TreeSet. The second rule (lines 20-22) states that an element is
not contained in a TreeSet that was just cleared. The last rule (lines 23-26) states that an element
el is contained in a TreeSet that just added an element e2 if e1 is equal to e2 or if e1 is contained
somewhere in the rest of the TreeSet.

Synthesis with Algebraic Specifications. To see how these rules work in practice, consider the
sketch in Figure 2b for the Irs method mentioned earlier. (Section 5 details our benchmark creation
process.) This method (line 30) returns a TreeSet of the longest repeated substrings. The input to Irs
is the fields n, t, Icp, and sa (line 28), which are initialized elsewhere (code not shown) and contain,
respectively, the target string’s length, contents as integers, longest common prefixes, and a suffix
array of the string.

The body of Irs begins with local variable initialization, followed by some loops and conditionals.
We discuss our procedure for developing this synthesis problem in detail in Section 5.2. For now, it
is sufficient to know that Irs uses two generators: guard, which generates a boolean for use in a
conditional guard, and stmts, which generates a sequence of statements. Note that, for clarity, the
code in this example has been simplified from the actual benchmark.

The guard generator (line 44) uses JSketch’s {| ... |} form, which selects among a set of expressions.
Here there are various comparisons of holes to ints[0], among others not shown. Conceptually,
ints[0] is just a local variable of Irs, but we store it in an array to make it easier to assign to in a
generator, as we will see shortly.
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1 | @rewriteClass class TS<E> { 27 | class SuffixArray {
2 @alg boolean add(E e); 28 int n; int[] t, Icp, sa;
3 | @alg void clear (); 29
4 | @alg @pure boolean contains(Object e); 30 | TS<String> Irs () {
5 | @alg @pure int size(); 31 int[] ints = ..; ints[0] = 0;
6 32 Object[] objs =...; objs[0]=new TS();
7 | rewrite size (TS()) { return 0; } 33 .. // Initialize other local vars
8 34 for (int i=0; i<n; i++)
9 | rewrite size (clear !(s)) { return 0; } 35 stmts(ints , objs );
10 36 for (int i=0; i<n; i++) {
11 | rewrite size (add!(s, e)) { 37 if (guard(ints, objs)) {
12 return contains(s, e) ? size(s) 38 if (guard(ints,objs))
13 : size (s)+71; 39 stmts(ints , objs );
14 } 10 stmts(ints, objs);
15 41 1}
16 | rewrite contains(TS(), e) { 42 return (TS<String>) objs [0];
17 return false; 43 }
| } 4 | generator boolean guard(..) {
19 45 return {| ints [0]<??,ints [0]>?? ...}
20 | rewrite contains(clear I(s), e) { 46 | }
21 return false; 47 | generator void stmts (...) {
22 | } 48 if (??) ints [0]=... objs [0]. size ()..;
23 | rewrite contains(add!(s, a), b) { 49 if (??) .. objs [0].add (..)..;
24 return a.equals(b) ? true 50 .. // additional statements
25 : contains(s, b); 51 if (??) stmts(ints, objs);
% | B sz |}
(a) JLibSketch algebraic specifications for TreeSet. (b) JSketch code (simplified).
Type annotations in rules omitted for clarity.
53 | harness public void testLRS () { 71 | class SuffixArray {
54 String s = "abccdd"; 72 int n; int[] t, Icp, sa;
55 | SuffixArray sa= new SuffixArray(s); 73
56 | TreeSet<String> lIrss = sa.lrs (); 74 | TS<String> Irs () {
57 | assert lIrss.size () == 2; 75 int max_len = 0;
58 |} 76 TS<String> Irss = new TS<>();
59 77 char[] tmp = new char[n];
60 | /+ lrss = add!(add!("c "[])" d") 78 for (int i=0; i<n; i++) {
61 Irss . size () = 79 tmp[i] = (char) t[i]; }
62 size (add!(add !("c ",[])" d")) 80 for (int i=0; i<n; i++) {
63 = (contains (add!("c "[])) d") ? 81 if (lep[i]>0 && lep[i] > max_len){
64 size (add!("c "[])) : 82 if (lep[i]>max_len) Irss . clear ();
65 size (add !(" ¢ "[])+1) 83 max_len = lcp[i];
66 =" size (add /([], "c")+1 84 Irss .add(new String(tmp,sa[i ],
67 = (contains ([]" ¢") ? size ([]) : 85 max_len));
68 size ([])+1)+1 86 B
69 =" size ([])+1+1 87 return Irss ;
70 = 24/ ss | I}
(c) TreeSet test harness. (d) Synthesis solution (simplified).

Fig. 2. JLibSketch example from SuffixArray (Table 1). TS is short for Java’s TreeSet class.
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The stmts generator (line 47) uses holes to guard each possible statement it could generate. Thus,
if a hole is synthesized as true, the statement it guards will be included, and otherwise it will not.
We show two example statements. If enabled, line 48 assigns the result of calling TreeSet’s size
method (on objs[0], also conceptually a local variable of Irs) to integer ints[0]. Similarly, if enabled,
line 49 calls TreeSet’s add method. Further, stmts is recursive, so it can generate arbitrary sequences
of statements, e.g., a sequence involving two calls to add.

Finally, to specify the correct behavior of Irs, we use the test suite that accompanied the original
code. For example, Figure 2c gives a harness (a test case) testLRS, which creates a SuffixArray from a
string, calls Irs, and asserts that the resulting set of longest repeated substrings has two elements.
(The full harness contains more tests and assertions about Irs.) Hence, the synthesis problem is to
find instantiations of guard and stmts—note each occurrence of a generator could be instantiated
differently—such that the synthesized code passes the test case.

When JLibSketch performs synthesis on this example, it uses the rules in Figure 2a to give
semantics to the TreeSet methods. For example, the comment at the bottom of Figure 2c shows
the rewriting steps that occur for testLRS, assuming for simplicity that JLibSketch has reached the
correct solution. Note that in reality, JLibSketch performs rewriting during synthesis, and thus
the rewriting steps taken are control-dependent on holes and generators, and the data values in
rewritten terms may also include holes and generators.

In Figure 2c, the call to Irs in the harness returns a TreeSet containing “c” and “d”. That TreeSet is
represented (line 60) as a term modeling the sequence of receiver-mutating method calls that would
construct it. Then, when checking the assertion (line 57), the call to size rewrites to a conditional
that checks if “d” was already added to the remainder of the TreeSet, per the third rewrite rule. Since
it was not, this is rewritten to size(...)+1. Then this call to size is rewritten again to a conditional, and
by the same process the term becomes size([])+1+1. This is simplified to 2 using the first rewrite rule.

The final synthesis solution is shown in Figure 2d. For clarity, we have replaced the local variable
arrays with separate local variables with meaningful names.

In this particular example, using algebraic specifications has significant benefits. The algebraic
specifications are about half the number of lines of code of mocks, and synthesis runs at least
twice as fast with algebraic specifications compared to mocks. In our experiments, we found this
trend holds in other cases as well. Another potential benefit is that using algebraic specifications to
describe relationships among methods might be simpler than describing the methods themselves.
For example, as mentioned in the introduction, we can write an algebraic specification such as
decrypt(encrypt(m, k), k) = m without needing to provide an actual implementation of encrypt or
decrypt.

3 COMPILING ALGEBRAIC SPECIFICATIONS TO SKETCH

JLibSketch follows the same approach as JSketch, which works by compiling a JSketch problem
into a Sketch problem, running Sketch on the result, and mapping Sketch’s solution to the original
JSketch input [Jeon et al. 2015b]. JLibSketch extends JSketch’s compilation to also encode the
rewriting rules for algebraic specifications.

To ease formal reasoning, we conceptually break JLibSketch’s compilation process into two steps.
The first step encodes JLibSketch into Sketch>, a core language we introduce that is Sketch-like
and has built-in support for algebraic specifications. More precisely, a Sketch?!® program has the
form A; 3; €, where A is a set of algebraic data type (ADT) declarations, H is a set of harness
functions with holes and € is a set of rewrite rules. We omit the translation as it is similar to

JSketch [Jeon et al. 2015b].
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simulate rewriting

Sketcht!'® program P ——  (section 35)  + Sketcheore program [P]2PT
1 1
I I
find candidate ¥ find candidate ¥
I I
v H rewrite to v .
Complete program P(¥) ---- (Section 3.4) --+» Complete program [P(7)]e
1 1
I I
VC generation VC generation
I I
A\ . rewrite by ~% v _
TJUE E VOPW))? ----- (Section 3.3 ---+ T |= Cang (VCO(P(1)))?

Fig. 3. Compiling Sketch?IP to Sketchcore.

The second step, which we focus on in this section, compiles a Sketch?i> program to Sketchore,

a core sublanguage of Sketch. Formally, we describe this step as a compilation [[‘J’]]‘QDT, where
P = A; H; € is the original Sketch! program. We also simply denote it as [[f]-f]]‘gD T when the ADT

re
declarations A is fixed. The superscript ADT indicates that the compiled program models algebraic
specifications by rewriting Sketch ADTs [Inala et al. 2017], which are constructed terms that can
be destructed by pattern matching. We present the major steps of this second compilation step and
prove its soundness and completeness, which means we can solve Sketch?® problems by compiling

them to Sketch.

3.1 SketchI? to Sketchcore Proof Overview

core

Figure 3 gives an overview of our argument that we can solve Sketch® problems by compiling
them to Sketchcore problems. The left-hand side of the figure shows a direct method for Sketch?b.
synthesis, with no compilation. Given a Sketch® program P with holes (top left), we generate a
candidate solution 3 for the holes of P (middle left). We then check whether the Sketch?\, program
with no holes, P(9), is correct by generating a verification condition (VC) and checking it under
the theory of integers T and the rewrite rules & (bottom left). If the VC holds, then P(?) is a
valid solution (Theorem 3.3). Thus, we have a guess-and-check approach for Sketch? synthesis,
which is the core of either a brute-force algorithm or counterexample-guided inductive synthesis
(CEGIS) [Solar-Lezama 2013]. However, this algorithm requires reasoning with the rewrite rules as
part of VC checking.

The right-hand side of Figure 3 shows a parallel procedure in which the Sketch?’, program
has been compiled to a pure Sketchcore program, i.e., the solver need not reason about the rewrite
rules separately. We show that this procedure—and therefore the compilation into Sketchore—is
correct. We proceed from the bottom right to the top right. First, in Section 3.3 (bottom right), we
show that checking the synthesis condition under T U € is equivalent to rewriting according to &
and then checking the rewritten synthesis condition (Cang (VC(P(9)))) under just T. Next (middle
row), in Section 3.4 we show that rewriting according to € can be lifted to the program level for a
candidate solution P(3). Finally (top row), in Section 3.5 we show that rewriting according to &
for a Sketch?!® program with holes can be simulated using abstract data type (ADT) operations in
Sketcheore.

Section 3.2 begins with a formal description of both Sketch*® and Sketcheoge.

core
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u : library value x: library variable f: library function
n : primitive value z : primitive variable
: algebraic data type C : ADT constructor d : ADT variable
= A H;E
s= adtA = CA|AA
harness (x;z2) S | H; H
== skip | z:= E | assume(B) | assert(B) | d := R | d := match(d,R) | S;S
| 2= f(V) | x = f(V)
2= n|??|z|E+E|E—-E
true | false |z < z|x=x | BAB|BVB|-B
d|(CR)
z | x
n|u
skip | rewrite T = T" | €; €
s= o |V|f(T)|T+T|T=T

b

[T N

S me < x Wty
i

!

Fig. 4. Syntax of Sketchg’(l)irlf3 (the full syntax) and Sketchcore (the non-highlighted part only).

3.2 Sketchcore and Sketch;'(l,irlfE Syntax and Semantics

Figure 4 gives the syntax for our core languages. The highlighted portions are part of Sketch;i>
only, which we discuss below. For simplicity, both languages have primitive values n that include
only integers with a few operations (+, —, and <), but our approach extends in a straightforward
way to more operators and a richer set of primitives.

In Sketcheore, @ program P consists of a set of algebraic data type declarations A, a set of
harnesses H, and an empty set of rewrite rules €. The body of a harness is a sequence of statements.
Assignments z := E bind primitive variables z to expressions, which are either primitive values,
holes ?? to be solved for, primitive variables, or sums or differences of expressions. The assume
and assert statements behave as expected given a boolean expression with the usual connectives.
Assignments d := R bind ADT variables d to ADT terms. In statement d := match(d, R), d is an
ADT variable and R is a pattern, i.e., an ADT term with a set of variables. If the term represented
by d can be matched with the pattern R, every variable in R is mapped to a subterm of d. These
subterms can be ordered by their positions in the pattern R (from left to right), and bound to a
vector of ADT variables d.

Note that Sketcheore does not include branching or looping. Assuming all loops are bounded
(which is the case in Sketch), these forms can be split into multiple straight-line harnesses using
assume.

The synthesis goal [Solar-Lezama 2016] is to find a solution for the holes such that, for any
values assigned to the harness parameters x and z (i.e., they are universally quantified), running
the harness will not trigger any assertion failures. We will make this precise shortly.

Adding Algebraic Specifications. To extend Sketch,re to Sketch?  we introduce library func-
tions f. Such functions may return either primitive values or library values u. Note that the latter
never appear in the surface syntax, because they can only be created by calling library functions.
For simplicity, we assume there is only a single library type returned by library functions.

We syntactically distinguish library variables x, which can hold values of the library type, from
primitive variables, and we allow equality tests among library variables in conditional positions.
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HARNESS CaLLl _
EnV =[x @z — (Env,V) > & Env = Env[z ¥ [f(D)or]]
1 — 1
(harness (x;z) , S) o, (Env', S) (Env,z := f(V)) o, (Env/, skip)
ASSERTT ASSERTF
(Env, B) — true (Env, B) — false

1
(Env, assert(B)) o, (Env, skip) (Env, assert(B)) Ol ERROR

Fig. 5. Operational semantics of Sketch?P (partial).

We then extend our statement language to include two assignments for library calls: z := f(V)
and x := f(V), which bind primitive and library variables, respectively, to the result of a library
call. The arguments to such calls are sequences of variables; values can be passed by first assigning
them to a variable. Notice that we assume the programmer knows which calls return primitives
and which return the library type. For example, in Figure 2, add returns the library type, and size
returns a primitive. (We discuss this issue further in Section 4.)

Finally, we introduce rewrite rules of the form rewrite T = T’, where terms T and T’ are
patterns composed of primitive/library values, primitive/library variables, library calls, and primitive
operations. We write Vars(T) for the free variables of T, and we assume that if rewrite T = T’ is a
rule, then Vars(T”) C Vars(T). We interpret such a rule to mean that any expression instantiating T
is equivalent to the corresponding (simplified) expression instantiating T”.

To define the synthesis problem, we first need to describe how to run programs with rewrite
rules. To keep our semantics simple, we assume the existence of an oracle Orcl that models library
calls. More specifically, for every function f(9), the oracle Orcl maps arguments o to the return
value [f(9)] ore- The oracle must also be consistent with the rewrite rules:

Definition 3.1 (E-model). An oracle Orcl is an E-model if [t] oy = [¢'] or for all t and ¢’ such
that t can be rewritten to ¢’ using rules in €.

Now we can define a semantics for Sketch?!P

., part of which is shown in Figure 5. For harness

Orel
bodies, our semantics proves judgments of the form (Env, S) RN (Env’,S’), meaning in initial

environment Env (a binding of variables to values), executing statement S with oracle Orcl yields
environment Env’ with remaining statement S’ to be executed, without any assertion violation.?
For example, Carrl uses the oracle to reduce a library call, and AsserTT evaluates a valid assertion
to skip. Assertion violations reduce to the special error term in AsserTF. Finally (and with a slightly
different judgment form), in HarnEss, evaluating a harness evaluates its body with arbitrary bindings
for its arguments. A complete semantics can be found in Appendix A.

Given this semantics, we can now define the synthesis problem: given a Sketch?" find a solution

core?

for the holes such that there are no assertion violations in any executions. Formally:

Definition 3.2 (Validity). A Sketch:® program P = A;J; € is valid if every hole in H can be
assigned a value to form a harness H{’ with no holes such that for any £-model Orcl it is the case

that (e, ") does not reduce to ERROR, where € is the initial, empty environment.

The synthesis problem, then, is to determine whether a program is valid according to the above
definition by finding an assignment to its holes.

2We assume the statements are all well typed with respect to the ADT declarations A, i.e., all ADT terms/patterns can be
associated with an appropriate ADT type defined in A.
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Synthesis Condition. As a last step before proceeding with the proof, we argue that we can reason
about validity by reasoning about VCs. Formally, let H = harness (%; z) S be a harness with holes h.®

From here on, we write such a harness as S[X, Z, 1] for compactness. Then for a Sketch?, program

P = A; H; €, we define the synthesis condition to be Fh.VC(P(h)), where h is the set of holes in I
and VC(P(h)) is the verification condition

veemy = N\ (V)’cVi.wp(S[)?, z, k), true))

S[x,z,h] € H

Here, wp(S[X, Z, ], ¢) is the (standard) weakest precondition of S with respect to ¢. (See Figure 11
in Appendix A.) Also, when plugging values for P’s holes into S we implicitly ignore values for
any holes not in S.

We can show that satisfying the synthesis condition is equivalent to validity:

THEOREM 3.3. Let T be the theory of integers (the primitives in Sketcheore). For any Sketch!ib
program P = A; H; &, the program P is valid if and only if T U € |= Fh.VC(P(h)).

Here T U € |= ¢ means that ¢ holds assuming the theory T and the rewriting rules in €.

3.3 Rewriting the Verification Condition

We now show that checking the VC with € is equivalent to checking the VC without € after
applying rewriting (under some assumptions).

The rewriting rules in € operate on terms T. We can lift these rules in a straightforward way to
verification conditions by simply applying the rules to the terms inside of a verification condition
in the obvious way. Let ¢ ~+¢ ¥ be the one-step rewriting relation derived in this way that applies
a single rewrite. Let ¢ ~7% ¥ be the reflexive, transitive closure of ~¢.

In general, applying these rewrite rules could be arbitrarily complex or could take arbitrarily
long. But we found that the rules needed for our experiments (Section 5) satisfy two key properties:

Definition 3.4 (Termination). A set of rewriting rules € is terminating if there is no unbounded
Sequence Q1 ~rg Pz ~rE P3 g ...

Definition 3.5 (Confluence). A set of rewriting rules € is confluent iff whenever ¢ »\»’é i and
¢ ~% /', there exists 0 such that y ~7% 6 and ¢’ ~7 6.

There are many ways to show these properties hold. For example, termination and confluence is
guaranteed for ordered and non-unifiable rewriting systems. An ordered rewriting system has a
Lexicographic Path Ordering (LPO), an ordering over the rewritten terms such that every rewriting
rule rewrites from a higher ordered term to a lower ordered term. A unifiable rewriting system
intuitively contains two rewriting rules such that applying one of them may potentially disable
the application of the other rule. The formal definitions of LPO and unifiability can be found in
Appendix B. Both orderedness and non-unifiability could be verified automatically, the former via
enumeration and the latter via the Maude Church-Rosser tool [Duran and Meseguer 2010]. In our
experiments, we found that manual verification of these properties was sufficient.

THEOREM 3.6. An ordered and non-unifiable rewriting system is terminating and confluent.
ProoF. See Appendix B. O

When a rewriting system is both terminating and confluent, exhaustively rewriting a formula
deterministically produces a canonical form:

3We assume the surface syntax ?? has been converted into hole variables i drawn from a new alphabet.
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Definition 3.7 (Canonical Form). Given terminating and confluent rewriting rules € for any
formula ¢, there is a unique formula  such that ¢ ~ ¥ and ¢ cannot be rewritten anymore. We
call ¢ the canonical form of ¢ and denote it as Cang ().

Finally, we can transform away reasoning about library functions by using the canonical form,
which is unique and deterministically computable:

THEOREM 3.8 (SOUNDNESS AND COMPLETENESS OF FORMULA REWRITING). Let € be a terminating
and confluent set of rewriting rules, then for any ¢, T U € |= ¢ if and only if T |= Cang(¢p).

Proor. See Appendix C. O
3.4 Compiling Complete Sketch;‘l,ir'z To Sketch gre
In Section 3.3 we showed that canonical rewriting allows for checking of the VC without €. Next
we lift canonical rewriting to the program level via compilation for complete Sketch?' programs,
i.e., Sketch:! programs with no holes.

We define a compiler [_]¢ from Sketch?P to Sketch,qr that takes the following steps:

(1) Normalize P to a Single Static Assignment (SSA) form, i.e., for each assignment in the program,
introduce a fresh new variable for each update to a variable, and rename all uses of this
variable accordingly.

(2) For each statement assume(p) or assert(¢p), repeatedly replace every non-input variable with
the right-hand side of the unique assignment for that variable, until all variables are input
variables.

(3) For each remaining statement assume(¢p) or assert(¢), replace it with assume(Cang(¢)) or

assert(Cang (9)).

We first prove the following lemma, which shows that this compilation process preserves the
verification condition:

+1ib

LEMMA 3.9. Let S be a complete harness in a Sketch?)? program and [S]e be the harness compiled

from S. Then Cang (wp(S, true)) = wp([S] ¢, true).

Proor. After the first two steps, any ¢ in a assume/assert statement does not contain any
non-input variable, and hence is not affected by any regular statement in the program. In other
words, wp(S, true) is a boolean combination of formulas from assume/assert statements. As the
third step has rewritten every assume/assert condition to its canonical form, wp([S] ¢, true) is just
Cang (wp(S, true)). O

More importantly, when the Sketch!> program involves unknowns, the compilation also pre-

serves solutions to the synthesis problem, i.e., if 7 is a solution to P, it is also a solution to [P]¢:

THEOREM 3.10 (PRESERVED SOLUTION). Let P = A; 3(; € be a Sketch? program with holes h. Then

for any candidate solution T, it is the case that if A; [H(D)] ¢; skip is valid, so is A; H(D); €, and vice
versa if € is ordered and non-unifiable.

ProoF. Assuming € is ordered and non-unifiable, with the synthesis condition, A; H(9); € is
valid

o TUé = /\ (Va‘cV:Z.wp(S[)E, z,0], true)) (by Theorem 3.3)
S[x,z,0]€eH
o TE /\ (V}?VZ.Cang (wp(S[x, z, 7], true))) (by Theorem 3.8)
S[x,z,0]eH
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o T= /\ (VJ‘CVE.Wp([[S[)‘c, z,0]]e, true)) (by Lemma 3.9)
S[x,z,0]eH
& [H(D)]e; skip is valid (by Theorem 3.3). O

3.5 Simulating Rewriting Through ADT Operations

The compiler just described assumes we can compute the canonical form during compilation, but
this is in general not possible if execution depends on unknowns. For example, let ¢ be the assertion
contains(add!(s,” a’), ??). If ?? is assigned "a’, then (using the rules in Figure 2a) Cang(¢) is true.
But if ?? is assigned ’b’, then Cang (¢) is contains(s,” b").

We solve this problem by compiling the computation of Cang (¢) as term rewriting that happens
at synthesis time in Sketcheore. We do this by representing terms as ADTs and then simulating
term rewriting by operations over ADTs. To do so we need a slightly more expansive version of
Sketcheore that includes ADTs, pattern matching, and conditionals. We omitted these from Figure 4
to keep the language compact; all these constructs have the expected semantics.

Figure 6 shows some of the generated ADT code. At the top of the figure, we create an ADT F
representing library call terms that return non-primitive values. For the primitive type integer we
create an ADT | for library calls that return integers, and similarly for booleans with ADT B. Notice
that the latter two ADTs have extra constructors to simulate built-in connectives from integer
arithmetic, as these connectives may also occur in the term to be rewritten. We denote these extra
ADT declarations as A¢.

The bottom of the figure shows the rewrite function that encodes the rewrite rules. It works by
performing a case analysis, with each case trying to match the pattern of the left hand side of a
rule and replace it with the corresponding right hand side. The first set of tests handle rewrites to
the top level of the term, and the switch statement handles nested rewrites. This particular rewrite
function handles the cases that return the library type; rewriting the other types is similar (not
shown), with the added caveat that they could return I and B ADTs or actual primitives, which we
discuss further in Section 4.

This ADT embedding allows us to compile a Sketch!> program P to a Sketchcore program
[[‘P]]‘QD T The compilation is similar to the one we present in Section 3.4. The only difference is that
in the last step, ¢ is compiled to a function call rewrite(¢p) instead of Cang (). We can then prove
our final theorem, that compiling rewriting rules into ADT manipulations is sound and complete:

THEOREM 3.11 (SOUNDNESS AND COMPLETENESS OF LIBRARY SYNTHESIS). Let P = A; ;€ be a
Sketch? program with holes h. Then for any candidate solution T, if A W Ag; [H]EPT (D); skip is

core
valid, so is H(D); €, and vice versa if € is ordered and non-unifiable.

3.6 Supporting More Rewriting Rules

Recall that the completeness of our approach relies on the assumption that the rewriting rules
are terminating. This assumption can be easily violated if a library function is associative and/or
commutative. For example, the string concatenation function is associative: concat(a, concat(b, ¢)) =
concat(concat(a, b), c). If we add both directions as rewrite rules, rewriting will not terminate
because the two terms can be rewritten back and forth ad infinitum.

Although we did not need to do so in our experiments, we can handle this case by treating
two kinds of binary functions differently. Let %4/ be the binary functions that are associative and
have an identity (there is a O¢ such that f(0r,a) = f(a,07) = a for any a). Let YA€l be the binary
functions that are associative, have an identity, and are commutative (which can also lead to infinite
rewriting through symmetry).
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adt F=fyzl...7}

| farf... 72

\ // for every library function f;:t} X X7, —F
adt | = f; Tl’ ... 1, //for every library function or standard integer function fj : - -+ — |
adt B = fx 7} ..., //forevery library function or standard boolean function fy. : - -- — B

F rewrite(F t) {
F[] V = match(t, ai(x)); //for every rule a;(x) = fi(x)
if (V # 1) return rewrite(f1(V)); //rewrite a;(V') to pi(V'); then continue rewriting recursively
F[] V = match(t, az(x));
if (V# 1)return ..

© % N G A W N =

o m e
S = S

switch (t) {

13

14 case fi(xi, .., Xp): //for every composite case f (..)
15 return rewrite(rewrite(x;), . . ., rewrite(x,));

16 case f;:

17 return ..

default: return t;

—
Y

°
—_
—_

Fig. 6. Definition of the ADTs and the rewrite function.

To avoid infinite rewriting, we stipulate that different kinds of functions take different forms of
arguments. A function g € X4/ takes a string of terms T as argument, denoted as g(T). A function
h € ZACT takes a multiset of terms S as argument, denoted as h[S]. These special signatures flatten
multiple, nested calls to the function to a single canonical method call, and avoid non-terminating
rewriting due to the associativity or commutativity. The ADT encoding we presented in Figure 6
can then be straightforwardly extended to support these functions.

4 IMPLEMENTATION

JLibSketch is built on top of JSketch, which is written in Python and comprises roughly 6.9K lines
of code (excluding the parser). JLibSketch is comprised of an additional 2.9K lines of code (again
excluding the changes to the parser). We next discuss two key challenges in developing JLibSketch:
implementing the rewrite function from Section 3 inside of Sketch, and introducing boxing to allow
Java primitives and objects to mix where necessary.

Implementing JLibSketch Rewriting in Sketch. As presented in Section 3, JLibSketch works by en-
coding @rewriteClass methods using Sketch ADTs and simulating term rewriting by ADT rewriting.
We illustrate the key ideas in Figure 7, which shows part of the Sketch code produced by JLibSketch
for the example from Section 2. Note we have simplified the Sketch output for readability by using
a simpler naming convention and eliding (object-oriented) dynamic dispatch.

For each @rewriteClass, JLibSketch adds a field to struct Object (line 10) —in this case _ts—to store
instances of the @rewriteClass as a Sketch ADT. Lines 11-16 define the ADT for our example, giving
three example constructors: TS, representing an empty TreeSet, and Add and Addb, representing the
regular return value of a call to add and the mutated receiver after such a call, respectively.

JSketch translates each method into a Sketch function, where the first function argument is the
receiver. Calls to @rewriteClass methods are translated into calls to JLibSketch-generated wrappers
that construct new ADTs, apply rewriting rules, and then return the result.

For example, lines 29-31 show the function generated for size. This function calls rewrite_sz,
part of which is shown on lines 33-39. rewrite_sz mirrors the rewrite function in Figure 6 by first
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struct Object{int __cid ;..; TS _ts;}
adt TS {

TS {}

Add {TS self; Object e;}

Addb {TS self ; Object e;}

\

bit rewrite_contains (TS s, Object e1){
switch(s) {
case TS: return false;
case Addb(s2, e2):
return equals(el, e2) ? true :
rewrite_contains (s2, el);

~J}

B. Mariano, ). Reese, S. Xu, T. Nguyen, X. Qiu, . S. Foster, and A. Solar-Lezama

void addb(Object self, Object e) {
self . _ts=new Addb(self._ts, e);

}

int size (Object self) {
return rewrite_sz (self . _ts);

}

int rewrite_sz (TS s) {
switch(s) {
case TS: return 0;
case Addb(s2, e):
return rewrite_contains (s2,e) ?
rewrite_sz (s2): rewrite_sz (s2)+1;

!

Fig. 7. (Partial) Compiled Sketch encoding of Figure 2.

performing case analysis on its argument to implement pattern matching. For example, if the
argument is Addb(s2, e), then rewrite returns a value depending on whether rewrite_contains(s2,e), i.e.,
it implements the third rewriting rule in Figure 2a. Notice we recursively apply the appropriate
rewrite function to any ADTs in the return value.

rewrite_sz is simpler than rewrite, as we make certain assumptions about our rewrite rules. For
example, we are able to elide the switch statement from Figure 6 (lines 13-19) because JLibSketch
performs eager rewriting, so subterms will already have been rewritten, and no rules in our
experiments rewrite subterms as part of the rule. Similarly, we are able to elide the primitive ADTs
B and I from Figure 6 as we assume rewriting of any ADT representing a primitive type produces
an actual primitive.

@rewriteClass methods with side effects (those that are not @pure) are handled similarly, except
each source-level call to such a method is translated into two Sketch calls, one to a function
returning the method’s return value and the other returning the mutated receiver. For example,
the call to Irss.add(...) in Figure 2d, line 84 would be translated into a call to add and a call to the
receiver-mutating function addb (line 25 in Figure 7), which updates the self parameter’s _ts field to
contain a new ADT representing the modified object. We need not call rewrite here, as no rewrites
of addb were defined in the @rewriteClass. This encoding lets us use ADTs, which are immutable, to
represent imperative computations.

Boxing Primitives and Arrays. In JLibSketch, alge-
braically specified library methods that return values
could either produce some actual value by rewrit-
ing, or they could evaluate to an ADT until later
combined with other method calls. Since ADTs are
stored in the Object type (Figure 7), this works fine
for library methods that return objects. However,
in Java, primitives are not objects, and, for perfor-
mance reasons, in JSketch, arrays are also not ob-
jects. Thus, there is no way in JLibSketch to declare
a library method as returning either an ADT or a
primitive/array depending on the call. This is similar

@rewriteClass
class Cipher {

... @alg @boxedRet @boxedArg(1)
byte[] doFinal(byte[] text);

rewrite byte[] doFinal(Cipher c1,
doFinal (Cipher c2, byte[] text )X
return text;

b

Fig. 8. Simplified manual boxing example from
PasswordManager.
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Table 1. Client program summaries with LoC comparison for mocks vs. rewrites.

Program LoC Summary Spec | Mock (S/M)
LoC | LoC LoC
SuffixArray! 349 | Sorted array of suffixes for a given string 225 399 0.56
used for indexing of substring patterns.
HashMap 1 337 Custom hash map using bucketing. 33 110 0.30
HashMap2® 221 Different custom bucketed hash map. 41 122 0.34
PasswordManager* | 384 Cryptographic password manager. 118 284 0.42
CipherFactory’ 458 Crypto backend for web app. 120 329 0.36
Kafka® 309 | Backend cryptographic component for tool 166 323 0.51
that brings NuCypher to Apache Kafka.
EasyCSV’ 484 | Library for parsing comma-separated files. 89 152 0.58
RomList® 482 Backend configuration parser for game. 106 173 0.61
Comparator’ 202 Line-by-line comparator for files. 247 307 0.80
1.2 https://github.com/williamfiset/ Algorithms S https://github.com/nucypher/kafka-as-module-oss

3 https://github.com/mohamednabil00000/Hashing-Table 7 https://github.com/dangeabunea/EasyCsv
4 https://github.com/azmy92/Crypto-password-manager ~ ° https://github.com/malgorzatazawojek/ComparatorOf TwoLists
58 No longer publicly available

to the problem faced by languages that support lazy evaluation, where thunks representing function
application could appear anywhere [Ingerman 1961].

To address this issue, JLibSketch requires the user to annotate both positions that must be boxed
so that primitives/arrays and Objects can co-occur, and positions that should be unboxed, allowing
access to values prior to use. In practice, we found that many examples require no manual boxing,
and even those that do often require only a few annotations. Moreover, Sketch’s type system will
complain if insufficient boxing is used, so requiring manual boxing creates no risk to correctness.
We leave autoboxing to future work [Lindholm et al. 2016].

Figure 8 illustrates boxing using a simplified snippet of one of our crypto benchmarks. In this
library doFinal is used both for encryption and for decryption. Thus—eliding details of keys and
some other arguments—one call to doFinal returns an ADT, and two nested calls to doFinal returns a
byte array (lines 6-9). Therefore, we add annotations @boxedRet and @boxedArg(1) to indicate the
argument and return of doFinal should be boxed. Then in code where doFinal is called (not shown),
we insert annotations to add and remove boxing, including @isBoxed for positions boxed values
flow to, and @unbox to unbox boxed values.

5 EXPERIMENTS

We evaluated JLibSketch by comparing synthesis using algebraic specifications with synthesis using
mocks on a set of Java programs. Our benchmark suite is comprised of nine client programs from
GitHub, from three application domains: data structures, cryptography, and file manipulation. We
modified each benchmark to turn it into a synthesis problem by introducing holes and generators
(Section 5.2). The first three columns of Table 1 give the size, in terms of lines of code (LoC), and
a brief description of each benchmark. LoC were determined using SLOCCount [Wheeler 2009]
where LoC are for the JSketch/JLibSketch code, rather than the resulting Sketch encoding. We chose
well-commented, well-organized benchmarks that ranged from 200-800 lines of code—to yield a
reasonably sized synthesis problem—and that used standard libraries from our target domains.

5.1 Mocking and Algebraically Specifying Libraries

We created both mocks and algebraic specifications for the libraries used by our benchmarks. We
restricted development to just those methods called by our benchmarks. For successful synthesis,
the mocks and specifications need not be complete with respect to the library behavior, as long as
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10 | E[] set; int cap, sz, rs_mult; 18 | void check_sz() {

11 | boolean add(E e) { 19 if (sz>cap) resize ();

12 if (contains(e )|| e == null) { 20

13 return false 21 | void resize () {

14 | } else { 22 | E[] ns = new E[capsrs_mult];

15 set[sz]=e; sz++; check_sz (); 23 | for(int i=0; i<cap; i++) { ns[i]=set[i]; }
16 return true; 24 set = ns; cap *= rs_mult;

7 | B} 25 | }

Fig. 9. (Partial) TreeSet model code for adding an element.

they are complete with respect to the requirements of the synthesized program. In general, one
might not know which methods are sufficient for synthesis a priori, however this can be learned by
incrementally including methods until synthesis succeeds. We were careful to ensure that mocks
and algebraic specifications implemented the same API functionality.

We developed algebraic specifications based on the methods’ documentation, which was quite
clear for our target libraries. We have already seen some example algebraic specifications in
Figure 2a.

To verify rewriting termination, we confirmed the rules are ordered, i.e., there is no way to
rewrite a term to itself by applying a sequence of rules and checked that the rules are non-unifiable,
i.e., there are no cases in which either more than one rule could be triggered or in which one rule’s
pattern could overlap another. (Recall that these two conditions, orderedness and non-unifiability,
are sufficient to prove termination, as shown in Theorem 3.6.) For example, in Figure 2a, the sixth
rule matches contains(add!(...)). There are no rules with add!(...) on the outside, and no rules with
contains on the inside (nested in another constructor), so applying the former rule cannot disable
any other rule. Thus, the rules are non-unifiable.

To develop mocks, we looked at the same documentation and wrote simple, straightforward
implementations that were sufficient (i.e., the program can successfully synthesize) and efficient
(i.e., we spent some time making sure the mock performed well). For example, Figure 9 gives a
mock for TreeSet’s add method (line 11). The class has four fields (line 10): set, an array containing
the elements, stored contiguously starting from index 0; sz, the number of elements stored in the
array; cap, the maximum possible size array; and rs_mult, the resizing multiplier. When adding
an element, duplicates are skipped (line 12), and if the array fills to capacity (line 18) then it is
reallocated (line 21). Notice that while this code is straightforward, we were forced to make some
implementation decisions (using an array) that introduce complexity (resizing when the array is
full).

For test harnesses, we used the test suite for each benchmark. Recall these test harnesses serve as
our specification; that is, any program synthesized is guaranteed to be correct with respect to the
test suite. Some examples had incomplete or lacking test suites, so we added additional harnesses to
cover more methods and functionality. In practice, we found the additional harnesses were simple
extensions of existing tests.

Size Comparison. Since we co-developed JLibSketch with the algebraic specifications and mocks,
we cannot make a direct comparison of effort required for each approach. However, we do observe
a significant difference in size, which may be a proxy for effort. The last three columns of Table 1
give the LoC for the specifications and mocks required for each program, along with their ratio.
From the table, we see that the algebraic specifications require fewer LoC for every example. The
median difference across all examples is over 80 lines. In the worst case (Comparator), the algebraic
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specifications are only 20% shorter, while in the best case (HashMap1), they are 70% shorter. For the
Comparator, the relatively small difference is due to the difficulty of encoding sorting over ArrayList
using rewrite rules; this is a case when rewrite rules are not a natural specification. In contrast, the
large difference in LoC for HashMap1 is due to complicated mocked ArrayList methods such as a
resizing method (similar to Figure 9); such implementation choices are not required with algebraic
specifications.

5.2 Synthesis Evaluation

To develop our benchmarks, we systematically turned the programs in Table 1 into synthesis
problems by applying a predetermined set of rules. The goal of this process is to yield challenging
synthesis problems that are not tailored to suit a specific library modelling approach. The rules are
as follows:

(1) Create an array for each local variable type. For example, the local variables max_len and Irss
in Figure 2d (lines 75-77) are translated into the arrays ints and objs in Figure 2b. Recall that
using arrays makes it easy for generators to assign to those variables.

(2) Create a function generator stmts that represents possible assignments to local variables
and calls to void functions with side effects. We use type information to determine which
assignments are possible.

(3) Create a generator guard that represents possible boolean values for conditional guards. The
guard generator can return local booleans, the results of calling boolean-valued functions,
comparisons, and conjunctions, disjunctions, and negations of such terms.

(4) Replace each block of non-control, non-return statements with a call to the stmts generator
and each conditional guard with a call to the guard generator.

(5) Replace each non-void return statement with a return of a generator for the appropriate type.
For example, return 0 is replaced by return genlnt(ints, objs), where genint operates similarly to
guard for integers instead of booleans.

For some of our benchmarks, this process creates very large synthesis problems that are well
beyond the power of JLibSketch. To keep the problems tractable, we applied simplifications as
needed to reduce the search space. Our simplifications mostly consisted of removing recursive
generator calls. For instance, we first incrementally replaced function call argument generators with
actual values. If more simplification was needed, we incrementally replaced generators for method
call receivers. In one benchmark (Comparator), we modified stmts to include multiple assignments
per hole, to reduce the number of recursive calls to stmts.

The second group of columns in Table 2 shows the number of statements (#S) and guards (#¥G)
necessary for successful synthesis as well as the approximate search space size. More precisely,
(#G) is the number of calls to guard, while (#S) is at least the number of calls to stmts, since each
call to the latter might generate multiple statements. The search space size is approximate because
inlining of generators in Sketch is determined heuristically at runtime.

Sketch Performance Considerations. In running the benchmarks, we found that some Sketch
command-line flags had significant performance effects. In particular, the loop unrolling bound
(U) and function call inlining bound (I) affect all nine benchmarks. Additionally, the range of
integers (R), the control bit bound (C), and use of adaptive concretization [Jeon et al. 2015a] (A)
affected performance of some of the benchmarks. Currently, there is no automated mechanism for
determining these bounds, so we started with each set to one, adaptive concretization disabled, and
no control-bit or integer bounds. We then incremented the bounds until synthesis succeeded. For
each benchmark, the resulting bounds were the same for both mocks and algebraic specifications.
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Table 2. Description of synthesis problem and experimental results.

Bench- Synthesis Problem Args Mock Alg. Spec
mark #S  #G Searchspace | U I A R C | Median(s) Median (s)
SuffixArray 14 2 3.8x10° | 8 3 N - - TO - 6602 1151
HashMap1 7 1 54%x10% | 5 1 N 43 - | 186 57 6 0.5
HashMap2 18 4 22x10% | 2 1 N 8 2 397 358 397 348
PasswordManager | 10 0 2.6x10%3 [ 16 2 N - - TO - 176 17
CipherFactory 16 0 1.2x10%| 9 3 N - - 33 0.03 4 0.03
Kafka 18 0 3a1x10M (35 2 N - - TO - 472 0.8
EasyCSV 12 1 1.2x10% | 5 3 N - -] 4682 7 1576 2.1
RomList 7 1 1.9x10° |26 2 Y - - 150 473 111 151
Comparator 7 0 2.8x10% |10 2 Y - - 97 87 42 50

U -loop unrolling bound, I-function inlining bound, A-adaptive concretization R-int range
C-control bits, #S-number of statements, #G-number of guards, T O-timeout (>14,400s)

Runtime Performance. The last group of columns in Table 2 shows the runtime of synthesis, in
seconds, for mocks and for algebraic specifications. All tests were performed using a 10-core Intel
Xeon v4 CPU running at 2.2 GHz with 128 GB RAM. We ran each synthesis problem 31 times
with mocks and 31 times with algebraic specifications; the table gives the median time and, in a
small font, the semi-interquartile range (SIQR). We set a timeout of 4 hours (14400 seconds) for all
problems. We manually verified that each synthesized solution was correct.

We observed that three benchmarks timed out for mocks but succeeded with algebraic specifica-
tions, sometimes in only a few minutes (PasswordManager and Kafka). Note that it was always the
case that either all runs of a particular experimental condition finished, or all runs timed out.

To compare performance of the remaining six benchmarks, we used the non-parametric Mann-
Whitney U-Test [Mann and Whitney 1947] to compare the distribution of results for mocks versus
algebraic specifications. We found that, with greater than 95% confidence, synthesis with algebraic
specifications was statistically significantly faster than with mocks for four of the remaining six
programs (indicated in bold), and was the same for the other two programs.

While it is difficult to understand the causes of performance differences in the experiments, we
did identify several trends. In the cryptographic examples, implementation choices in mocks can
have a notable performance effect, e.g., replacing a shift cipher mock with the identity function sped
up synthesis of CipherFactory by almost 20%. We also noticed that bounding the range of integers
can significantly improve performance. Without such a bound, Hashmap1 and HashMap2 do not
solve within the timeout for both mocks and algebraic specifications. Additionally, we found that
while adaptive concretization was needed for RomList and Comparator, it introduces significant
performance variance. Notice that the SIQRs for those programs are larger than or near the median.

Overall, in our experiments, synthesis with algebraic specifications is faster than with mocks for
seven of nine benchmarks, and performs the same for the other two benchmarks. Moreover, the
median performance increase ranges from 2x to more than 81X, and on three examples algebraic
specifications finish where mocks time out. Thus, our results suggest that algebraic specifications
can provide significant synthesis performance benefits over mocks for a range of programs.

5.3 Limitations of Algebraic Specifications

While our results are promising, algebraic specifications are not always better. Some libraries
are not amenable to algebraic specification, e.g., it seems hard to specify the behavior of square
root algebraically. However, since JLibSketch also allows mocks (they are just other methods
in the sketch), it can still support such libraries. Additionally, reasoning about termination of
rewriting (Section 3) might be harder than reasoning about looping in mocks. As discussed above,
though, reasoning about orderedness and non-unifiability was straightforward for the libraries
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we used. Further, unlike pre- and post-conditions, algebraic specifications cannot easily describe a
method’s semantics in isolation [Henkel and Diwan 2003; Henkel et al. 2007]. However, algebraic
specifications have an advantage when combinations of methods are simpler to reason about, e.g.,
the combination of encryption and decryption mentioned earlier. Finally, algebraic specifications
could potentially be implemented using mocks. However, this approach would be more cumbersome
and would likely have worse performance because it would not take advantage of Sketch’s ADT
features.

Lastly, in our experience, both approaches are similar when it comes to debugging synthesis
failures. We found it is often challenging to determine if such failures are due to the concrete parts
of the sketch, the holes and generators, or the library models, either algebraic specifications or
mocks. Indeed, improving debugging of synthesis is an interesting direction for future work.

Ultimately, we expect that neither algebraic specifications nor mocks is strictly better than the
other, and that having both available in the same system, as they are in JLibSketch, will provide the
most benefit.

5.4 Threats to Validity

There are several threats to the validity of these experiments. First, we evaluated one particular
implementation each of both mocks and specifications, but there could be other variations that
would affect performance. We leave further experimentation to future work, but we believe our
implementation decisions for both mocks and specs are reasonable (see supplemental materials for
all specifications and mocks). Second, the synthesis problems we chose might not be representative
of real problems faced in the wild. We tried to address this concern by developing problems from a
variety of programs from GitHub, written by a variety of authors and across three domains. Finally,
while we believe our technique is general, we have only evaluated it within JSketch. We leave it as
future work to extend other synthesizers with algebraic specifications.

6 RELATED WORK

Program Synthesis with Rewriting. Recently, Smith and Albarghouthi [2019] proposed using
algebraic rewriting as part of program synthesis. In their approach, candidate solutions, which are
generated separately and without using algebraic specifications, are rewritten to a normal form
using the algebraic rules. If a candidate rewrites to a candidate that was previously seen, then
there is no need to reverify it, which improves performance. In contrast, in JLibSketch, algebraic
specifications are used to entirely replace modeling of libraries, and are used both during candidate
generation and during verification.

Program Synthesis for Java. Several researchers have explored program synthesis in the context
of Java. Prospect [Mandelin et al. 2005] finds call sequences matching a given type signature.
Sypet [Feng et al. 2017] is similar, but also includes I/O examples as a harness. FrAngel [Shi
et al. 2019] builds on SyPet, using angelic execution to find programs that satisfy test cases and
then instantiating the angelic control-structure conditions for those programs. Unlike JLibSketch,
none of these systems support template-based synthesis, nor do they support algebraic library
specifications.

Algebraic specifications in SMT Solvers. An alternative to implementing algebraic specifications
via encoding would be to add support for them directly in the solver. We leave developing such an
approach in JLibSketch to future work. However, a few existing SMT solvers allow users to provide
universally quantified axioms. We investigated whether these approaches might work for algebraic
specifications.

Proc. ACM Program. Lang., Vol. 3, No. OOPSLA, Article 132. Publication date: October 2019.



132:20 B. Mariano, ). Reese, S. Xu, T. Nguyen, X. Qiu, . S. Foster, and A. Solar-Lezama

Z3 supports universally quantified axioms using E-matching [de Moura and Bjerner 2007]. We
wrote a small Z3 problem with an axiom similar to the third rule in Figure 2a. Unfortunately, Z3
fails to find a solution, and it is unclear to us whether there is a straightforward way to make the
example work. Hence we believe Z3 cannot yet incorporate algebraic specifications in a practical
manner.

We tried an equivalent problem with CVC4 [Barrett et al. 2011], which also fails to solve it.
However, re-encoding that problem to use recursive functions [Reynolds et al. 2016] does yield a
solution. The main issue with this encoding is that it does not work for partial algebraic specifi-
cations, because it solves a slightly different problem. In JLibSketch, in contrast to the recursive
function encoding, library methods cannot have any properties beyond those in the specifications.
For example, given a partial specification decrypt(encrypt(m, k), k) = m, the recursive function
encoding could also assume decrypt and encrypt are the identity, which would not be allowed in
JLibSketch. We leave it as future work to determine if there is another encoding in CVC4 that would
be effective.

There are other approaches to handling quantifiers in SMT solvers. For example, Amin et al.
[2014] propose two encoding systems for quantified SMT formulae that skirt the balance between
efficiency and completeness, while Suter et al. [2011] present a semi-decision procedure to avoid
the use of quantifiers in the solver altogether. Vazou et al. [2018] introduce refinement reflection so
that a function’s implementation is reflected into output refinement type specification. We leave
exploring these approaches in our domain to future work.

Program Synthesis using Models. Other works propose alternative library models for synthesis.
Singh et al. [2014] propose using manually created models, which are similar to mocks and have
many of the same strengths and weaknesses. Lustig and Vardi [2013] synthesize LTL systems using
libraries components specified using transducers, i.e., finite state machines with outputs. Gulwani
et al. [2011] synthesize programs using a library described with logical relations among inputs and
outputs. However, they only apply this approach to loop-free bitvector programs.

Algebraic Specification Inference. There has been some work in inferring algebraic specifications
from code. Henkel and Diwan [2003]; Henkel et al. [2007] dynamically enumerate and test speci-
fication candidates for Java methods. In subsequent work [Henkel et al. 2008], they apply these
specifications for program debugging by compiling the specifications to executable code. Several
researchers suggest techniques to improve the performance of inferring axioms for API usage.
Ghezzi et al. [2007] reduce the search space of dynamically inferring algebraic specification by
creating a graph that captures ordering of function calls observed when running the program
on sample inputs. Nguyen et al. [2009] generalizes this idea to infer API usage patterns. These
approaches could potentially provide algebraic specifications to JLibSketch.

7 CONCLUSION

We introduced JLibSketch, a Java program synthesis tool in which library methods can be described
with algebraic specifications. JLibSketch compiles its problems into Sketch problems in which
library methods return ADTs. Algebraic specifications are compiled to functions that rewrite those
ADTs. We formalized compilation and proved it sound and complete if the algebraic specifications
are ordered and non-unifiable. We evaluated JLibSketch on nine synthesis problems from three
domains. We found that, compared to mocks, algebraic specifications are on average half the size
and, on seven of the nine problems, enable synthesis to be 2x to 81X faster. Thus, we believe
JLibSketch takes an important step forward in making synthesis of programs with libraries more
practical.
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A SEMANTICS OF SKETCH;Lb
+lib

Figure 10 presents the big-step operational semantics for complete Sketch?,}’. programs (i.e., without
unknowns) with respect to an oracle Orcl for library calls.

B TERMINATION AND CONFLUENCE

Definition B.1 (Ordered Signature). An ordered signature is (2, >) with ¥ a signature (=F, %, a)
and > an ordering over =¥ U 3F.

Definition B.2 (Lexicographic Path Ordering). Given an ordered signature (2, >), the lexicographic
path ordering >, is an ordering over X-terms defined recursively as follows:
® a >y, x if x is a variable in @ and x # a.
® S >y a (or T >y ) if there exists an element 8 in S (or in T) such that >, a.
® a >y, S (or a >y T) if for any element B in S (or in T), a >y fB.
o T >}y, T" if there is a subsequence T*” of T such that T’ can be obtained from T"’ by replacing
every element of T"” with a string of strictly smaller (w.r.t. Ipo) elements.
S >po S" if there is a subset S’ of S such that 5" can be obtained from S’ by replacing every
element of $”” with a multiset of strictly smaller (w.r.t. Ipo) elements.
e(ay,....an) >po €'(ay,...,ay,)if
- e’ > e and for some i, @; >, e(a,...,ap);
—e>e’ande(ay,...,an) > ajf for all j; or
—-e=¢ ande(as,...,an) >po an forall j,and a;. -+ .ap >ppo af. -+ . in the lexicograph-
ical order.

LeEmMA B.3. Let (2, >) be an ordered signature. We call a rewriting system (2, €) ordered if we have
& >1po P for every equational rule a = 8 in E. An ordered rewriting system is terminating.

ProOF. As ¥ is finite and >, is a reduction ordering as it is a LPO [Baader and Nipkow 1998].
(2, €). By the definitioin of reduction ordering, (%, €) is terminating [Dershowitz and Jouannaud
1990]. o

Definition B.4. A rewriting system (2, €) is unifiable if there exist two equational rules a(X) = f8
and a’(y) = p’ such that:

(1) either there is a substitution © that replaces every variable in ¥ or i with a formula, and

O(a(x)) = O(a’(H)),
(2) or there is a symbol f occurs in the root position of a(X) and a non-root position of a’(¥).

Proof of Theorem 3.6. Let (2, £) be an ordered and non-unifiable rewriting system. By Lemma B.3,
(2, €) is terminating. Then by the Newman’s Lemma [Huet 1980; Newman 1942], to prove the
confluence of (%, €), it suffices to show it is locally confluent, i.e., given two one-step rewritings
@ ~¢ Y and ¢ ~¢ Y, there exists 6 such that y ~7% 0 and ¢’ ~7. 0. Notice that if the two
one-step rewritings to  and ¢/’ are at two different positions ¢, by Definition B.4, the two positions
are not overlapped, i.e., either side-by-side or one position nested in a variable-position of another
position. If the two rewritings are at the same position, only one equational rule can be applied and
¥ = ’. Hence the rewriting system does not have any critical pair [Knuth and Bendix 1970] and
therefore is confluent.

C COMPLETENESS

Before proving Theorem 3.8, we start with defining two terminologies:

Definition C.1 (2-sentence). Given a signature ¥, a X-sentence is a X-formula in which all occur-
rences of variables are bounded occurrences.
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HARNESS

VaL

Env' = [5(i—>12'§0—>ﬁ]

(harness (x;z) , S)

VAR1 VAR2

(Env S)

(Env,n) —> n

NEGT NEGF
(Env, B) — true (Env, B) — false

(Env, x) — Env(x)

Cony
(Env, B;) — by

(Env, z) — EnW(z)

(Env, Ez) — b,

(Env, —~B) — false (Env, =B) — true

Disy
(Env,By) — b; (Env,E;) — b,

(Env,B; A By) — by A by

LEssTHAN

(Env, E) — ny

(Env,B; V By) — by V by

(Env,E;) — ny

(Env,E; < E;) — ny < ny

CaLrl

PrLus MiNus
(Env,E1) — my (Env,E3) — ny (Env,E1) — ny (Env,Ez) — ny
(Env,Ey + E2) — nq + ny (Env,Eq — E3) = nq — ny
CaALL2

(Env,V) > & Env = Env[z & [f(9) oyl

(Env,V) > & Env = Env[x & [f(9)oyl]

(Env, z := f(V)) e (Env', skip)

(Env,x := f(V)) Orel, (Env', skip)

AssnN1 ASSN2
(Env E) > v
(Env, z := E) (Env[z — v], skip) (Env,d := R) — o, (Env[d — R], skip)
Marcu _
Vars(R){x1,...,xn}, (Env,dy = R',R[ry,...,ry] =R

Orcl

(Env,d := match(d,R)) — (Env[d, — r1,...

ASSUME ASSERTT

(Env, B) — true

(Env, B) — true

,dn > 1], skip)

ASSERTF
(Env, B) — false

Orcl

(Env, assume(B)) o, (Env, skip) (Env, assert(B)) o, (Env, skip) (Env, assert(B)) — ERROR

SEQL SEOR SEQE
Orcl ) o Orcl
(Env, S1) — (Env, S7) (Env, S;) — ERROR
Env, S158,) <55 (Env/, S!S, (Env, skip; S) 25 (Env,S)  (Env, S13S,) —< ERROR
1 p

Fig. 10. Operational semantics of Sketch?lib

core*

Definition C.2 (2-theory). Given a signature X, a 3-theory 7 is a set of X-sentences. We say a
>-structure A is a T-model if A |= o for any o € T.
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[ s | wGSoe= |
skip ®
z:=E ¢[z/E]

2= ) | ol T)]
x:= (V) | olx1/f"(x2, V)]
assume(B) -BVg
assert(B) BAg

515 S2 wp(Sz, wp(S1, ¢))

Fig. 11. Weakest precondition.

Proof of Theorem 3.8. From right to left: For any model of &, the definition of canonical form
guarantees that every step in the rewriting from ¢ to Cang () is valid, i.e., € |= ¢ < Cang(p).
Then if T |= Cang(p), TU € |= Cang(¢) A (¢ < Cang(p)). By modus ponens, T U € |= ¢.

From left to right: We prove by contradiction. Suppose M is a model of T violating Cang (¢), we
construct a model M’ of T U € violating ¢.

Note that € is a finite set of quantified formulas. Then to find a model of T U € violating ¢, by the
recent completeness result by [Loding et al. 2017], it suffices to find a model of T U ;s violating ¢,
where Ejys is the set of exhaustive quantifier instantiation of € with terms from ¢. Now given a model
M of T, €ins divides elements of M to equivalence classes. Each foreground element a in M belongs to
the equivalence class [m] = {b | there exists terms t,, t;, € Terms(¢) such that [t,]m = a, [tp]m =
b, and Cang(t,)) = Cang(tp))}. Then for each equivalence class, there is a unique canonical term
t such that [t]» belongs to the class. We use such [t]yr as the representative for each class [m],
denoted as Rep(m). Then we can construct M’ from M: the elements are {Rep(m) | m € M}, and
for every n-ary function f, [f]sr(Rep(my),...Rep(my)) = [flm(mi, ..., mp).

Note that M’ is a model of T U €;,5: on the one hand, M is a model of the background theory T
and M’ and M agree on the background sort, M’ is a model of T as well; on the other hand, the
construction of M’ guarantees that M’ satisfies all equations possibly used in rewriting ¢, namely
Eins- Moreover, if M violates Cang (¢)), so does M’, as M preserves all elements used in interpreting
Cang (¢)). In conclusion, M’ is a model of T U € violating ¢, which concludes the proof.

ACKNOWLEDGMENTS

Thanks to the anonymous reviewers for their helpful comments. This research was supported in
part by the National Science Foundation under Grant Nos. CCF-1139021 and CCF-1837023.

REFERENCES

Nada Amin, K. Rustan M. Leino, and Tiark Rompf. 2014. Computing with an SMT Solver. In Tests and Proofs, Martina Seidl
and Nikolai Tillmann (Eds.). Springer International Publishing, Cham, 20-35.

Franz Baader and Tobias Nipkow. 1998. Term rewriting and all that. Cambridge University Press, University Press, Cambridge,
UK.

Clark Barrett, Christopher L. Conway, Morgan Deters, Liana Hadarean, Dejan Jovanovi¢, Tim King, Andrew Reynolds, and
Cesare Tinelli. 2011. CVC4. In Proceedings of the 23rd International Conference on Computer Aided Verification (CAV ’11)
(Lecture Notes in Computer Science), Ganesh Gopalakrishnan and Shaz Qadeer (Eds.), Vol. 6806. Springer, Berlin, 171-177.
http://www.cs.stanford.edu/~barrett/pubs/BCD+11.pdf Snowbird, Utah.

James Bornholt and Emina Torlak. 2017. Synthesizing memory models from framework sketches and litmus tests. ACM
SIGPLAN Notices 52, 6 (2017), 467-481.

James Bornholt, Emina Torlak, Dan Grossman, and Luis Ceze. 2016. Optimizing synthesis with metasketches. In ACM
SIGPLAN Notices, Vol. 51. ACM, New York, NY, USA, 775-788.

Proc. ACM Program. Lang., Vol. 3, No. OOPSLA, Article 132. Publication date: October 2019.


http://www.cs.stanford.edu/~barrett/pubs/BCD+11.pdf

132:24 B. Mariano, ). Reese, S. Xu, T. Nguyen, X. Qiu, . S. Foster, and A. Solar-Lezama

Luca Cardelli, Milan Ceska, Martin Frinzle, Marta Kwiatkowska, Luca Laurenti, Nicola Paoletti, and Max Whitby. 2017.
Syntax-guided optimal synthesis for chemical reaction networks. In International Conference on Computer Aided Verifica-
tion. Springer, Berlin, Heidelberg, 375-395.

Alvin Cheung, Armando Solar-Lezama, and Samuel Madden. 2012. Using program synthesis for social recommendations. In
21st ACM International Conference on Information and Knowledge Management, CIKM’12, Maui, HI, USA, October 29 -
November 02, 2012, Xue-wen Chen, Guy Lebanon, Haixun Wang, and Mohammed J. Zaki (Eds.). ACM, Hawaii, USA,
1732-1736. https://doi.org/10.1145/2396761.2398507

Loris D’Antoni, Roopsha Samanta, and Rishabh Singh. 2016. Qlose: Program repair with quantitative objectives. In
International Conference on Computer Aided Verification. Springer, Berlin, Heidelberg, 383-401.

Leonardo de Moura and Nikolaj Bjerner. 2007. Efficient E-Matching for SMT Solvers. In Automated Deduction - CADE-21,
21st International Conference on Automated Deduction, Bremen, Germany, July 17-20, 2007, Proceedings. Springer Berlin
Heidelberg, Berlin, Heidelberg, 183-198.

Nachum Dershowitz and Jean-Pierre Jouannaud. 1990. Rewrite Systems. In Handbook of Theoretical Computer Science,
Volume B: Formal Models and Sematics (B). Elsevier, Cambridge, MA, USA, 243-320.

Francisco Duran and José Meseguer. 2010. A Church-Rosser Checker Tool for Conditional Order-Sorted Equational Maude
Specifications. In Rewriting Logic and Its Applications, Peter Csaba Olveczky (Ed.). Springer Berlin Heidelberg, Berlin,
Heidelberg, 69-85.

Yu Feng, Ruben Martins, Yuepeng Wang, Isil Dillig, and Thomas W Reps. 2017. Component-based synthesis for complex
APIs. ACM SIGPLAN Notices 52, 1 (2017), 599-612.

Carlo Ghezzi, Andrea Mocci, and Mattia Monga. 2007. Efficient recovery of algebraic specifications for stateful components.
In Ninth international workshop on Principles of software evolution: in conjunction with the 6th ESEC/FSE joint meeting.
ACM, ACM, New York, NY, USA, 98-105.

Sumit Gulwani, Susmit Jha, Ashish Tiwari, and Ramarathnam Venkatesan. 2011. Synthesis of Loop-free Programs. In
Proceedings of the 32Nd ACM SIGPLAN Conference on Programming Language Design and Implementation (PLDI °11).
ACM, New York, NY, USA, Article 1, 12 pages. https://doi.org/10.1145/1993498.1993506

Johannes Henkel and Amer Diwan. 2003. Discovering algebraic specifications from Java classes. In European Conference on
Object-Oriented Programming. Springer, Springer Berlin Heidelberg, Berlin, Heidelberg, 431-456.

Johannes Henkel, Christoph Reichenbach, and Amer Diwan. 2007. Discovering documentation for Java container classes.
IEEE Transactions on Software Engineering 33, 8 (2007), 526-543.

Johannes Henkel, Christoph Reichenbach, and Amer Diwan. 2008. Developing and debugging algebraic specifications for
Java classes. ACM Transactions on Software Engineering and Methodology (TOSEM) 17, 3 (2008), 14.

Jinru Hua and Sarfraz Khurshid. 2017. EdSketch: execution-driven sketching for Java. In Proceedings of the 24th ACM
SIGSOFT International SPIN Symposium on Model Checking of Software. ACM, New York, NY, USA, 162-171.

Gérard Huet. 1980. Confluent Reductions: Abstract Properties and Applications to Term Rewriting Systems: Abstract
Properties and Applications to Term Rewriting Systems. 7. ACM 27, 4, Article 1 (Oct. 1980), 25 pages. https://doi.org/10.
1145/322217.322230

Jeevana Priya Inala, Nadia Polikarpova, Xiaokang Qiu, Benjamin S. Lerner, and Armando Solar-Lezama. 2017. Synthesis of
Recursive ADT Transformations from Reusable Templates. In Tools and Algorithms for the Construction and Analysis of
Systems, Axel Legay and Tiziana Margaria (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 247-263.

P. Z. Ingerman. 1961. Thunks: A Way of Compiling Procedure Statements with Some Comments on Procedure Declarations.
Commun. ACM 4, 1, Article 1 (Jan. 1961), 4 pages. https://doi.org/10.1145/366062.366084

Jinseong Jeon, Xiaokang Qiu, Jonathan Fetter-Degges, Jeffrey S. Foster, and Armando Solar-Lezama. 2016. Synthesizing
framework models for symbolic execution. In Proceedings of the 38th International Conference on Software Engineering,
ICSE 2016, Austin, TX, USA, May 14-22, 2016. IEEE, Austin, TX, USA, 156-167. https://doi.org/10.1145/2884781.2884856

Jinseong Jeon, Xiaokang Qiu, Armando Solar-Lezama, and Jeffrey S. Foster. 2015a. Adaptive Concretization for Parallel
Program Synthesis. In Computer Aided Verification (CAV) (Lecture Notes in Computer Science), Vol. 9207. Springer
International Publishing, Cham, 377-394.

Jinseong Jeon, Xiaokang Qiu, Armando Solar-Lezama, and Jeffrey S. Foster. 2015b. JSketch: Sketching for Java. In European
Software Engineering Conference and Foundations of Software Engineering (ESEC/FSE), Tool Demo Track. ACM, Bergamo,
Italy, Article 1, 4 pages.

D. E. Knuth and P. B. Bendix. 1970. Simple Word Problems in Universal Algebras. In Computational Problems in Abstract
Algebras, J. Leech (Ed.). Pergamon Press, Oxford, 263-297.

Tim Lindholm, Frank Yellin, Gilad Bracha, and Alex Buckley. 2016. The Java Virtual Machine Specification, Java SE 8 Edition.
Pearson Education, Redwood City, CA , US.A.

Christof Loding, P. Madhusudan, and Lucas Pefia. 2017. Foundations for natural proofs and quantifier instantiation.
Proceedings of the ACM on Programming Languages 2, POPL (Dec 2017), 1-30. https://doi.org/10.1145/3158098

Proc. ACM Program. Lang., Vol. 3, No. OOPSLA, Article 132. Publication date: October 2019.


https://doi.org/10.1145/2396761.2398507
https://doi.org/10.1145/1993498.1993506
https://doi.org/10.1145/322217.322230
https://doi.org/10.1145/322217.322230
https://doi.org/10.1145/366062.366084
https://doi.org/10.1145/2884781.2884856
https://doi.org/10.1145/3158098

Program Synthesis with Algebraic Library Specifications 132:25

Yoad Lustig and Moshe Y. Vardi. 2013. Synthesis from component libraries. International Journal on Software Tools for
Technology Transfer 15,5 (01 Oct 2013), 603-618. https://doi.org/10.1007/s10009-012-0236-z

David Mandelin, Lin Xu, Rastislav Bodik, and Doug Kimelman. 2005. Jungloid mining: helping to navigate the API jungle.
In ACM Sigplan Notices, Vol. 40. ACM, New York, 48-61.

H. B. Mann and D. R. Whitney. 1947. On a Test of Whether one of Two Random Variables is Stochastically Larger than the
Other. The Annals of Mathematical Statistics 18, 1 (1947), 50-60. http://www.jstor.org/stable/2236101

M. H. A. Newman. 1942. On Theories with a Combinatorial Definition of "Equivalence". Annals of Mathematics 43, 2 (1942),
223-243. http://www.jstor.org/stable/1968867

Tung Thanh Nguyen, Hoan Anh Nguyen, Nam H. Pham, Jafar M. Al-Kofahi, and Tien N. Nguyen. 2009. Graph-based
Mining of Multiple Object Usage Patterns. In Proceedings of the the 7th Joint Meeting of the European Software Engineering
Conference and the ACM SIGSOFT Symposium on The Foundations of Software Engineering (ESEC/FSE '09). ACM, New
York, NY, USA, Article 1, 10 pages. https://doi.org/10.1145/1595696.1595767

Andreas Raabe and Rastislav Bodik. 2009. Synthesizing hardware from sketches. In 2009 46th ACM/IEEE Design Automation
Conference. IEEE, San Francisco, California, USA, 623-624.

Andrew Reynolds, Jasmin Christian Blanchette, Simon Cruanes, and Cesare Tinelli. 2016. Model finding for recursive
functions in SMT. In International Joint Conference on Automated Reasoning. Springer, Berlin, 133-151.

Kensen Shi, Jacob Steinhardt, and Percy Liang. 2019. FrAngel: component-based synthesis with control structures. Proceedings
of the ACM on Programming Languages 3, POPL (2019), 73.

Rishabh Singh, Sumit Gulwani, and Armando Solar-Lezama. 2013. Automated feedback generation for introductory
programming assignments. Acm Sigplan Notices 48, 6 (2013), 15-26.

Rohit Singh, Rishabh Singh, Zhilei Xu, Rebecca Krosnick, and Armando Solar-Lezama. 2014. Modular Synthesis of Sketches
Using Models. In Verification, Model Checking, and Abstract Interpretation - 15th International Conference, VMCAI 2014,
San Diego, CA, USA, January 19-21, 2014, Proceedings. Springer Berlin Heidelberg, Berlin, Heidelberg, 395-414.

Calvin Smith and Aws Albarghouthi. 2019. Program Synthesis with Equivalence Reduction. In International Conference on
Verification, Model Checking, and Abstract Interpretation. Springer, Berlin, Heidelberg, 24-47.

Armando Solar-Lezama. 2013. Program sketching. STTT 15, 5-6 (2013), 475-495. https://doi.org/10.1007/s10009-012-0249-7

Armando Solar-Lezama. 2016. The Sketch Programmers Manual. MIT. Version 1.7.5.

Armando Solar-Lezama, Gilad Arnold, Liviu Tancau, Rastislav Bodik, Vijay Saraswat, and Sanjit Seshia. 2007. Sketching
Stencils. In PLDI ’07: Proceedings of the 2007 ACM SIGPLAN conference on Programming language design and implementation,
Vol. 42. ACM, New York, NY, USA, 167-178. https://doi.org/10.1145/1273442.1250754

Armando Solar-Lezama, Christopher Grant Jones, and Rastislav Bodik. 2008. Sketching concurrent data structures. In ACM
SIGPLAN Notices, Vol. 43. ACM, New York, NY, USA, 136-148.

Armando Solar-Lezama, Liviu Tancau, Rastislav Bodik, Vijay Saraswat, and Sanjit Seshia. 2006. Combinatorial Sketching
for Finite Programs. In ASPLOS °06. ACM Press, San Jose, CA, USA, Article 1, 12 pages.

Philippe Suter, Ali Sinan Kéksal, and Viktor Kuncak. 2011. Satisfiability Modulo Recursive Programs. In Static Analysis -
18th International Symposium, SAS 2011, Venice, Italy, September 14-16, 2011. Proceedings. Springer Berlin Heidelberg,
Berlin, Heidelberg, 298-315.

Emina Torlak and Rastislav Bodik. 2014. A Lightweight Symbolic Virtual Machine for Solver-aided Host Languages. In
PLDI'14. ACM, Edinburgh, UK, 530-541.

Heila van der Merwe, Oksana Tkachuk, Brink van der Merwe, and Willem Visser. 2015. Generation of Library Models for
Verification of Android Applications. SIGSOFT Softw. Eng. Notes 40, 1, Article 1 (Feb. 2015), 5 pages.

Niki Vazou, Anish Tondwalkar, Vikraman Choudhury, Ryan G. Scott, Ryan R. Newton, Philip Wadler, and Ranjit Jhala. 2018.
Refinement reflection: complete verification with SMT. PACMPL 2, POPL (2018), 53:1-53:31.

Xinyu Wang, Isil Dillig, and Rishabh Singh. 2017. Synthesis of data completion scripts using finite tree automata. Proceedings
of the ACM on Programming Languages 1, OOPSLA (2017), 62.

David Wheeler. 2009. SLOCcount. http://www.dwheeler.com/sloccount/

Proc. ACM Program. Lang., Vol. 3, No. OOPSLA, Article 132. Publication date: October 2019.


https://doi.org/10.1007/s10009-012-0236-z
http://www.jstor.org/stable/2236101
http://www.jstor.org/stable/1968867
https://doi.org/10.1145/1595696.1595767
https://doi.org/10.1007/s10009-012-0249-7
https://doi.org/10.1145/1273442.1250754
http://www.dwheeler.com/sloccount/

	Abstract
	1 Introduction
	2 Overview
	3 Compiling Algebraic Specifications to Sketch
	3.1 Sketchcore+lib to Sketchcore Proof Overview
	3.2 Sketchcore and Sketchcore+lib Syntax and Semantics
	3.3 Rewriting the Verification Condition
	3.4 Compiling Complete Sketchcore+lib To Sketchcore
	3.5 Simulating Rewriting Through ADT Operations
	3.6 Supporting More Rewriting Rules

	4 Implementation
	5 Experiments
	5.1 Mocking and Algebraically Specifying Libraries
	5.2 Synthesis Evaluation
	5.3 Limitations of Algebraic Specifications
	5.4 Threats to Validity

	6 Related Work
	7 Conclusion
	A Semantics of Sketchcore+lib
	B Termination and Confluence
	C Completeness
	Acknowledgments
	References

