COOLer: A Language Support Extension for COOL in VS Code

Linhan Li and ThanhVu Nguyen

George Mason University

Abstract

COOL is an object-oriented programming language used to teach
compiler design in many undergraduate and graduate courses. Be-
cause most students are unfamiliar with the language, and because
code editors and IDEs often lack support for COOL, writing code
and test programs in COOL is burdensome to students, causing
them to not fully understand many important and advanced fea-
tures of the language and its compiler.

In this paper, we describe COOLer, an extension providing sup-
port for COOL in the popular VS Code IDE. COOLer offers (i) syntax
highlighting support for the COOL language through lexing and
parsing, (ii) semantic-aware auto-completion features that help stu-
dents type less and reduce the burden of remembering unfamiliar
COOL grammar and syntax, and (iii) relevant feedback from the
underlying COOL interpreter/compiler (e.g., error messages and
typing information) integrated directly into the VS Code editor to
aid debugging. We believe that COOLer will help students enjoy
writing COOL programs and consequently learn and appreciate
advanced compiler concepts more effectively.

CCS Concepts

« Software and its engineering — Integrated and visual de-
velopment environments; Compilers; « Social and professional
topics — Computing education; Computational science and en-
gineering education; « Human-centered computing — User in-
terface design.

Keywords
COOL, VS Code Extension, Compiler, LSP, IDE

ACM Reference Format:

Linhan Li and ThanhVu Nguyen. 2025. COOLer: A Language Support Ex-
tension for COOL in VS Code. In 34th ACM SIGSOFT International Sym-
posium on Software Testing and Analysis (ISSTA Companion ’25), June 25—
28, 2025, Trondheim, Norway. ACM, New York, NY, USA, 5 pages. https:
//doi.org/10.1145/3713081.3731729

1 Introduction

COOL (Classroom Object-Oriented Language) is a language often
used in undergraduate and graduate compiler classes. These include
traditional courses at Stanford [15], UC Berkeley [1], University of
Nebraska [11], University of Michigan [5, 17], and Vanderbilt [4],
as well as online courses offered through Coursera [3], edX [16],
and Stanford Online [14]. The language is sufficiently small for

90¢0

This work is licensed under a Creative Commons Attribution-NonCommercial-
ShareAlike 4.0 International License.

ISSTA Companion °25, Trondheim, Norway

© 2025 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-1474-0/2025/06

https://doi.org/10.1145/3713081.3731729

USA

students to implement a complete interpreter or compiler within a
semester but is still powerful enough to support major concepts in
modern object-oriented programming languages, including poly-
morphism, inheritance, dynamic dispatch, type checking, and auto-
matic garbage collection. As described by Alex Aiken, its author,
the COOL language is “object-oriented, statically typed, and has
automatic memory management” [1].

Although COOL is the chosen language for many compilers
and programming languages courses, its syntax and semantics are
often unfamiliar to students. As a result, students only write sim-
ple COOL programs to test their compiler implementations. Such
limited tests cause students to overlook many important language
features and thus miss crucial compiler designs required to han-
dle these features (e.g., dynamic dispatch, inheritance, complex
memory management). The reason for this is not that students
are unwilling to create more complicated and thorough tests, but
rather because they are not enthusiastic about writing long and
complex COOL programs without support from their preferred
code editors. More generally, because students have a difficult time
writing COOL programs, they do not appreciate the language and
lack the motivation to develop the compiler to support its features—
ultimately missing key opportunities to deepen their understanding
of compiler design.

Existing IDE extensions for COOL include language-cool [8]
for VS Code, cool-highlighter [13] for Sublime Text, and
atom-language-cool [12] for Atom. These provide only basic syn-
tax highlighting and are largely repackaged versions of the same
set of rules. While basic highlighting can aid readability, it is insuf-
ficient to engage students effectively or make COOL programming
convenient. The absence of features like auto-completion and inte-
grated error reporting forces students to either memorize COOL’s
syntax, frequently consult the language manual, or run the pro-
vided reference compiler separately to validate their programs. As
a result, many students end up writing COOL programs in plain
text mode with little to no meaningful editor assistance.

To help students effectively learn COOL, we have developed
COOLer, a portable and feature-rich extension designed for major
IDEs that support the increasingly popular Language Server Proto-
col (LSP) [10]. COOLer provides comprehensive syntax highlighting
for the entire COOL language by leveraging regular expressions
from the COOL lexer and parser to accurately recognize COOL
syntax. Additionally, COOLer offers intuitive and practical auto-
completion capabilities commonly found in modern IDEs, such
as code suggestions and automatic structure completion. These
features assist students in writing correct code and greatly reduce
the need to memorize COOL’s syntax and grammar details. Finally,
COOLer takes advantage of the client-server design of LSP to deliver
real-time error-checking and feedback directly to users within the
VS Code editor. For example, COOLer can automatically underline
problematic lines of code and provide immediate explanations of

https://doi.org/10.1145/3713081.3731729
https://doi.org/10.1145/3713081.3731729
https://creativecommons.org/licenses/by-nc-sa/4.0
https://creativecommons.org/licenses/by-nc-sa/4.0
https://creativecommons.org/licenses/by-nc-sa/4.0
https://doi.org/10.1145/3713081.3731729

ISSTA Companion 25, June 25-28, 2025, Trondheim, Norway

class Main inherits I0 { class Main inherits 10 {

main():Int{ main():Int{
—— comment —— comment
let let
s:String <- "string" s:String <- "string"
in in
S s + 1
} }
} }

(a) No extension (b) language-cool

Linhan Li and ThanhVu Nguyen

class Main inherits I0 {
main():Int{
—-— comment
let
s:String <- "string"
in
s +1
i ERROR: 7: Type-Check: arithmetic on String Int instead of Ints

Y

(c) coOLer

Fig. 1: Comparing COOLer with other extension settings.

1 class Main inherits IO {

2 main():Int{{

3 out_string('Hello, World!\n");
4 let

5 a:Int <- in_int()
6 in

7 if a<0

8 then 0

9 else a

10 fi;

11 h

12 15

Fig. 2: Simple Cool program in VS Code with COOLer

the compilation errors, helping students quickly understand and
debug their COOL programs.

Fig. 1 shows the same COOL program with different VS Code ex-
tensions. Notice that with COOLer, the program is color-coded with
syntax highlighting and semantics error highlighting—showing
that the program has a type error (Fig. 1c).

2 Tool Availability

COOLer is open source and available on GitHub (https://www.
github.com/dynaroars/COOL-Language-Support), and can be in-
stalled directly to VSCode via its Marketplace [6]. An archive ver-
sion is hosted on Zenodo (https://doi.org/10.5281/zenodo.15058779).
A YouTube demo is also provided (https://youtu.be/X8tk2Ik4j8k),
showing how the tool works in practice.

3 COOL

COOL is an object-oriented (OO) language and shares some de-
sign and syntax with Java. Fig. 2 shows a small COOL program
that prints HelloWorld (lines 1-3) and a simple if statement. The
COOL manual, called CoolAid [2], provides the formal syntax and
semantics of the language, which we summarize below.

Syntax. The syntax of COOL is designed to be simple. This al-
lows students to write regular expressions—regexes—for the lexer
and parser to recognize syntactically correct COOL programs. The
standard COOL specification does not have advanced features such
as list/array structures, threading/multi-processing supports, or
exception handling.

Tab. 1 displays the syntax and context-free grammar of COOL. A
COOL program is a set of COOL classes, and each class consists
of features which are attributes (variables) and methods. Each
class defines a type and thus the programmer defines new types

Tab. 1: Cool Syntax and Grammar

program == [class;]|t
class == class TYPE [inherits TYPE] { [feature;]*}
feature = ID([formal[,formal]*]):TYPE { expr }
| ID:TYPE[<- expr]
formal := ID:TYPE
expr == ID <-expr
expr[@TYPE]ID ([expr[expr*])
ID([expr [expr]*])
if expr then expr else expr fi
while expr loop expr pool
{lexpr*}
let ID:TYPE [<- expr] [ID:TYPE [<-expr]]” in expr
case expr of [ID:TYPE=> expr]* esac
new TYPE | isvoid expr | ~expr | not expr
(expr) | expr [+[-]*)/] expr | expr [<|<=] expr
ID | constant(integer|string|true|false)

+ep:Int F e :Int
op € {#,+—,/}
- ejop ey :Int

ey : Int(iy) b ey : Int(iy)
op € {#,+,—,/}
vy =1Int(iyopiz) Fej opey: vy

Fig. 3: Type Checking and Operational Semantic Rules

and associated data and methods by creating new classes (similar
to Java). COOL is an expression language, and thus most COOL
constructs are expressions. Expressions take up a large portion of
the COOL syntax, but in general are relatively straightforward and
similar to expressions in traditional languages. Note that the let
expression that declares a new variable is similar to the one used
in a functional language such as OCaml.

Type Checking and Semantics. COOL is a type-safe language
and thus its compiler type-checks the input program to ensure no
typing errors at runtime. The typing rules for COOL, defined in the
CoolAid manual, provide deduction rules for COOL expressions
(e.g., if x is an integer and y is an integer then the expression x +
y results in an integer).

The evaluation of a COOL program is provided using opera-
tional semantics rules. Similar to type checking rules that deduce
the types of COOL expressions, these operational semantic rules
deduce values for COOL expressions (e.g., if x is 3 and y is 7 then
the expression x + y results in 10). These rules are also specified

https://www.github.com/dynaroars/COOL-Language-Support
https://www.github.com/dynaroars/COOL-Language-Support
https://doi.org/10.5281/zenodo.15058779
https://youtu.be/X8tk2Ik4j8k

COOLer: A Language Support Extension for COOL in VS Code

[@E di tor]“[@)Language]“[@Language] <_»[@COOL]

Client Server Compiler

VS Code
Extension Host

Fig. 4: Overview of COOLer

in the CoolAid manual. Fig. 3 shows the type checking and oper-
ational semantics rules for applying binary operators *, +, —, / to
expressions el and e2.

Reference Compiler. Students taking compiler courses using
COOL often implement a full COOL compiler, which consists of sev-
eral main phases, including lexing, parsing, type checking, semantic
evaluation, and assembly code generation. To help students debug
and make progress, the instructor provides a complete “reference”
compiler, e.g., an executable binary compiled from a COOL com-
piler implementation written in C. Students then use the reference
compiler to check each step of their implementation by compar-
ing outputs and error messages. COOLer leverages the reference
compiler to return error messages to the user.

4 COOLer

COOLer is composed of four components shown in Fig. 4.

(D The editor provides a GUI interface to the user, and is the
host of many editing features including syntax highlight
(4.1) and auto-completion (4.2). It also interfaces with the
language client () through its API to display information
such as error messages from the COOL compiler.

(@ The language client interacts with the editor and the lan-
guage server by sending and receiving information, e.g., get-
ting the content of an opened file, cursor position, or display
error messages. Whenever the client is activated, it creates a
language server and sends data to the server.

® The language server is a proxy to our COOL compiler.
When a request from the client is received, the server re-
trieves the source code and sends it to the COOL compiler
for analysis. The analysis results are composed into the LSP
response format and returned to the client for display.

@ The COOL reference compiler performs standard compi-
lation phases such as parsing, type checking, and commu-
nicating results (e.g., warning and error messages) to the
language server).

Once installed, COOLer is automatically activated within VSCode
when the user opens a COOL file with a . c1 extension. It provides
syntax highlighting and auto-completion at the editor level, and
type checking and evaluation at the language server level.

4.1 Syntax Highlight

Syntax highlight in COOLer is handled by the VS Code editor. The
editor tokenizes the source code using the regex rules specified in
a TextMate configuration file. The editor then assigns colors to the
tokens displayed in the IDE based on their defined roles as specified

ISSTA Companion 25, June 25-28, 2025, Trondheim, Norway

Tab. 2: Syntax Highlight Rules

Constructs Regex Descriptions

integer non-negative integer with no leading zero

ID(Class) alphanumeric string starting with an uppercase letter
ID(other) alphanumeric string starting with a lowercase letter
special ID self, SELF_TYPE

string alphanumeric string enclosed by double quotes
comment line starting with "-" and block enclosed by "(*", "*)"
class, else, false, fi, if, in, inherits, isvoid, let, loop,

pool, then, while, case, esac, new, of, not, true

keywords

in IDE’s current theme (e.g., comments are blue in some themes
while red in others).

1 "scopeName": "source.cool",

2 "name": "COOL",

3 "fileTypes": ["cl"]

4 "patterns":[

5 "line_comment": {

6 "begin": "--", "end": "$",

7 "name": "comment.line.double-dash.cool"
8 ¥

9 "class": {

10 "match": "\\b[A-Z][a-zA-Z0-9_I*\\b",
11 "name": "entity.name.type.class.cool"
12 bl

Fig. 5: Syntax Highlight Configuration in COOLer

For COOLer, we create a TextMate [7] JSON file consisting of
regular expressions (regexes) for all of COOL’s keywords, tokens,
etc. Fig. 5 shows a snippet of a TextMate configuration having
regexes for line comments and class identifiers. When the user
opens a COOL (. cl) file, the COOLer extension is activated and uses
these rules for syntax highlighting. Tab. 2 shows syntax highlighting
regexes for the main constructs of COOL.

4.2 Auto Completion

COOLer supports standard auto-completion (also called "Intel-
lisense" in VS Code [9]). This allows the user to type a few keywords
and the IDE can suggest and insert common code structures. For
example, when COOLer detects that the user is typing the keyword
if, it will ask if the user wants to replace that with the COOL snip-
pet if condition then expression else expression fi. This
auto-completion is straightforward yet useful in code development
in an IDE as they help accomplish the goal of reducing typing effort
and syntax errors from the developer.

To offer syntactically and structurally correct snippets, COOLer’s
auto-completion has knowledge about the syntax and grammar
of COOL. Similar to syntax highlighting (§4.1), this is achieved at
the editor level using a TextMate configuration file. This TextMate
file consists of rules mapping prefix strings (e.g., let) with code
snippets (e.g., let var ... in ..). The code snippets can have
multiple placeholders for any sub-expressions, and the user can
switch between them using the “Tab” key. Once the configuration
file is loaded with the extension, the editor will automatically try
to match the prefix with the string the user entered. If the input

ISSTA Companion 25, June 25-28, 2025, Trondheim, Norway

matched (can be fully or partially) the prefix of any snippets, the
name and description of the snippet will be listed in a drop-down
menu for the user to select.

"COOL_class_inherits": {
"prefix": "class",
"body": [
"class ${1:Name} inherits ${2:0bject}{",
"\t${0:body}",
"3,

"description": "COOL: class inherits"}

~No o b wN =

Fig. 6: TextMate auto-completion Configuration

Fig. 6 shows an example of COOLer’s TextMate configuration.
Here, “body” defines the code snippet line by line, and the “${. ..}”
marks the placeholders. This snippet defines the snippet for a class
definition in COOL (i.e., when the user types class, the COOLer
can fill in the skeleton for defining a class in COOL).

Example. Fig. 7 shows an example when COOLer senses that the
user wants to declare a new variable through the let keyword and
generates the snippet for new variable declaration with appropriate
placeholders for specifying the type and initial value.

4.3 LSP-based analysis and interaction

COOLer uses LSP for feedback communication, i.e., displaying
information from the backend COOL compiler such as errors and
warnings to the frontend editor. The design of the LSP allows the
analysis to be done in separate processes, and communicate the
results with the editor through inter-process communication (thus
analysis done in the server does not affect the user’s interaction
with the editor).

COOLer includes a pair of language client and server. The lan-
guage server is used as a proxy to communicate with the COOL
reference compiler. When the user saves their code changes, the
server invokes the COOL compiler on the code and sends outputs
to the client. The language client acts as a middle layer between
the editor and the language server. It receives data such as error
messages from the server and invokes the editor’s API to display
them to the user.

For COOLer, reporting data such as error messages from the
COOL compiler to the client is achieved by formatting and translat-
ing the error message into a representation that the editor can un-
derstand and display. More specifically, when the compiler reports
an error or warning is found in the program, the editor displays the
line number, the stage of compilation, and the detailed error mes-
sage. These errors and warnings can come from any compilation

1 class Main{ 1 class Main{
2 main():Int{ 2 main():Int{
3 3 let
4 ki 4 | Va:TYPE <- initializer
5 % 5 in
6 6 body|
7
8 }
9 K

Fig. 7: Auto-completion in COOLer

Linhan Li and ThanhVu Nguyen

phase, e.g., failure to parse certain expressions or having incorrect
type associations.

1 class Main{

3 ERROR: 2: Type-Check: String does not conform to Int in initialized attribute
4

5 View Problem No quick fixes available

6

7 main():Int{

8 num

9 i

1)

Fig. 8: Displaying Error Messages

Example. Fig. 8 shows how COOLer communicates error mes-
sages to the user via the editor. In line 2, the user assigns a string
constant to variable num of type Int, which is a type error in COOL.
This error is caught by the backend compiler and reported back
to the user. The red wavy line indicates the location of the error,
and hovering over the line will display a detailed error message as
shown in the figure.

5 Conclusion

We presented COOLer, an LSP-based extension that allows existing
IDEs and editors to support the COOL programming language.

We have shared COOLer to colleagues teaching courses involving
COOL so that they can refer their students to try the tool. We
have also started using COOLer in our compiler course. We will
continue to maintain COOLer and add more features in based on
feedback from our students and others. It is also worth mentioning
that COOLer has been downloaded and installed in VS Code over
1,000 times as reported from VS Code Marketplace, suggesting
that COOLer is being used by students and instructors in courses
involving COOL. A user succinctly captured difficulty of COOL and
the effectiveness of COOLer in a 5-star review: “Static CA! saved my
life when it comes to a language like this, so much that I'm willing to
spend time to write a review”.

COOLer also demonstrates that researchers can easily make their
work more accessible to users who are familiar with IDEs but not
with traditional research tools. Researchers can integrate their static
or dynamic analysis tools into the LSP and interact with users in the
same way COOLer interacts with the COOL compiler. For instance,
besides creating a command-line fault localization or program re-
pair tool, developers can also build an LSP connection to the IDE,
allowing users to directly interact with the tool through any editor
supporting LSP. Given the popularity of IDEs like VS Code and their
powerful extension ecosystems, we believe this approach will make
research tools more attractive to users, who often enjoy exploring
new extensions that are easy to install and use.

Acknowledgments

We thank the anonymous reviewers for their helpful comments.
This material is based in part upon work supported by the Na-
tional Science Foundation under grant numbers 2422036, 2319131,
2238133, and 2200621, and by an Amazon Research Award.

CA stands for code analyzer—this user refers to COOLer as a static code analyzer.

COOLer: A Language Support Extension for COOL in VS Code

References

[1] Alexander Aiken. 1996. Cool: A Portable Project for Teaching Compiler Con-
struction. SIGPLAN Not. 31, 7 (jul 1996), 19-24.

[2] Alexander Aiken. 2025. COOL. http://theory.stanford.edu/~aiken/software/cool/
coolhtml. Accessed: July 28, 2025.

[3] edombowsky. 2025. edombowsky/coursera-compiler. https://github.com/
edombowsky/coursera-compiler. Accessed: July 28, 2025.

[4] Kevin Leach. 2025. CS3276: Compilers. https://cumberland.isis.vanderbilt.edu/
¢s3276/. Accessed: July 28, 2025.

[5] Kevin Leach. 2025. EECS 483: Compiler Construction. https://dijkstra.eecs.umich.
edu/eecs483/. Accessed: July 28, 2025.

[6] Linhan Li. 2025. COOL Language Support - Visual Studio Market-
place. https://marketplace.visualstudio.com/items?itemName=Linhan.cool-
language-support. Access: July 28, 2025.

[7] MacroMates. 2021. TextMate: Text editor for macOS. https://macromates.com/.
Accessed: July 28, 2025.

[8] Guangming Mao. 2016. language-cool - Visual Studio Marketplace. https:

//marketplace.visualstudio.com/items?itemName=maoguangming.cool

[9
[10
[11
[12
[13
[14
[15

[16

[17

]
]

ISSTA Companion 25, June 25-28, 2025, Trondheim, Norway

Microsoft. 2025. IntelliSense in Visual Studio Code. https://code.visualstudio.
com/docs/editor/intellisense, accessed on July 28, 2025.

Microsoft. 2025. The Language Server Protocol. https://microsoft.github.io/
language-server-protocol. Accessed: July 28, 2025.

ThanhVu Nguyen. 2025. Compiler Construction. https://nguyenthanhvuh.github.
io/class-compilers/index.html. Accessed: July 28, 2025.

Jeff Principe. 2025. atom-language-cool. https://github.com/princjef/atom-
language-cool. Accessed: July 28, 2025.

Jeff Principe. 2025. Sublime Cool Highlighter. https://github.com/princjef/
sublime-cool-highlighter. Accessed: July 28, 2025.

Stanford University. 2025. Compilers | Stanford Online. https://online.stanford.
edu/courses/soe-ycscs1-compilers. Accessed: July 28, 2025.

Stanford University. 2025. CS143: Compilers. https://web.stanford.edu/class/
cs143/. Accessed: July 28, 2025.

Stanford University. 2025. Stanford Online: Compilers | edX. https://www.edx.
org/learn/computer-science/stanford-university-compilers. Accessed: July 28,
2025.

Westley Weimer. 2025. CSCI 2320: Compilers. https://weimer.github.io/csci2320/
index.html. Accessed: July 28, 2025.

http://theory.stanford.edu/~aiken/software/cool/cool.html
http://theory.stanford.edu/~aiken/software/cool/cool.html
https://github.com/edombowsky/coursera-compiler
https://github.com/edombowsky/coursera-compiler
https://cumberland.isis.vanderbilt.edu/cs3276/
https://cumberland.isis.vanderbilt.edu/cs3276/
https://dijkstra.eecs.umich.edu/eecs483/
https://dijkstra.eecs.umich.edu/eecs483/
https://marketplace.visualstudio.com/items?itemName=Linhan.cool-language-support
https://marketplace.visualstudio.com/items?itemName=Linhan.cool-language-support
https://macromates.com/
https://marketplace.visualstudio.com/items?itemName=maoguangming.cool
https://marketplace.visualstudio.com/items?itemName=maoguangming.cool
https://code.visualstudio.com/docs/editor/intellisense
https://code.visualstudio.com/docs/editor/intellisense
https://microsoft.github.io/language-server-protocol
https://microsoft.github.io/language-server-protocol
https://nguyenthanhvuh.github.io/class-compilers/index.html
https://nguyenthanhvuh.github.io/class-compilers/index.html
https://github.com/princjef/atom-language-cool
https://github.com/princjef/atom-language-cool
https://github.com/princjef/sublime-cool-highlighter
https://github.com/princjef/sublime-cool-highlighter
https://online.stanford.edu/courses/soe-ycscs1-compilers
https://online.stanford.edu/courses/soe-ycscs1-compilers
https://web.stanford.edu/class/cs143/
https://web.stanford.edu/class/cs143/
https://www.edx.org/learn/computer-science/stanford-university-compilers
https://www.edx.org/learn/computer-science/stanford-university-compilers
https://weimer.github.io/csci2320/index.html
https://weimer.github.io/csci2320/index.html

	Abstract
	1 Introduction
	2 Tool Availability
	3 COOL
	4 COOLer
	4.1 Syntax Highlight
	4.2 Auto Completion
	4.3 LSP-based analysis and interaction

	5 Conclusion
	References

