SLING: Using Dynamic Analysis to Infer Program
Invariants in Separation Logic

Ton Chanh Le
Stevens Institute of Technology
Hoboken, New Jersey, USA
letonchanh@gmail.com

Abstract

We introduce a new dynamic analysis technique to discover
invariants in separation logic for heap-manipulating pro-
grams. First, we use a debugger to obtain rich program exe-
cution traces at locations of interest on sample inputs. These
traces consist of heap and stack information of variables
that point to dynamically allocated data structures. Next, we
iteratively analyze separate memory regions related to each
pointer variable and search for a formula over predefined
heap predicates in separation logic to model these regions.
Finally, we combine the computed formulae into an invariant
that describes the shape of explored memory regions.

We present SLING, a tool that implements these ideas to
automatically generate invariants in separation logic at arbi-
trary locations in C programs, e.g., program pre and postcon-
ditions and loop invariants. Preliminary results on existing
benchmarks show that SLING can efficiently generate cor-
rect and useful invariants for programs that manipulate a
wide variety of complex data structures.

CCS Concepts + Theory of computation — Separation
logic; Invariants; Pre- and post-conditions; Program
analysis; « Software and its engineering — Dynamic
analysis; Software verification.

Keywords dynamic invariant analysis, separation logic

ACM Reference Format:

Ton Chanh Le, Guolong Zheng, and ThanhVu Nguyen. 2019. SLING:
Using Dynamic Analysis to Infer Program Invariants in Separation
Logic. In Proceedings of the 40th ACM SIGPLAN Conference on Pro-
gramming Language Design and Implementation (PLDI ’19), June
22-26, 2019, Phoenix, AZ, USA. ACM, New York, NY, USA, 14 pages.
https://doi.org/10.1145/3314221.3314634

1 Introduction

A program invariant is a property that holds whenever pro-
gram execution reaches a specific location. For example, a
loop invariant can indicate a relation among the program
variables at the loop entrance. Invariants help prove pro-
gram correctness, e.g., classical verification approaches by
Floyd-Hoare and Dijkstra [13, 21] can be automated when
given needed loop invariants and the infamous Heartbleed

PLDI ’19, June 22-26, 2019, Phoenix, AZ, USA
2019. ACM ISBN 978-1-4503-6712-7/19/06...$15.00
https://doi.org/10.1145/3314221.3314634

Guolong Zheng
University of Nebraska-Lincoln
Lincoln, Nebraska, USA
gzheng@cse.unl.edu

ThanhVu Nguyen
University of Nebraska-Lincoln
Lincoln, Nebraska, USA
tnguyen@cse.unl.edu

bug can be avoided by preserving an invariant capturing
the proper size of the received payload message [16]. Invari-
ants also help developers understand programs, e.g., show-
ing interesting or unexpected behaviors, and even discover
non-functional bugs, e.g., revealing that the program has an
unusual high runtime complexity [37]. Invariants are also
useful in other programming tasks, including documentation,
maintenance, code optimization, fault localization, program
repair, and security analysis [1, 2, 15, 18, 30, 37, 45].

Unfortunately, software developers appear to perceive a
“specification burden” [2] which leads them to eschew the
writing of invariants in favor of executable code. For the
past decade, researchers have been chipping away at this
challenge of automatic invariant generation using static or
dynamic analyses. A static analysis can reason about all
program paths soundly, but doing so is expensive and is
only possible to relatively small programs or simple forms
of invariants, e.g., simple list structures [3, 11, 35]. In con-
trast, dynamic analysis focuses on program traces observed
from running the program on small sample inputs, and thus
provides no correctness guarantee on generated invariants.
However, dynamic analysis is generally efficient and can
infer expressive invariants because it only analyzes a finite,
typically small, set of traces.

Existing invariant techniques often focus on invariants
over scalar variables, e.g., relations among numerical val-
ues [19, 37, 42]. However, modern programs construct and
manipulate data structures, i.e., highly-structured sets of
memory locations within which these scalar values are
stored. Examples of such data structures are dynamically-
allocated objects, e.g., heap-based objects created via the
new keyword, standard data structures, e.g., lists and trees,
or customized and user-defined structures that extend the
standard ones and contain other structures internally. Under-
standing and reasoning about these heap-based programs
are more challenging, e.g., even the task of accessing a
variable requires checking if it points to a valid memory
region (to avoid null pointer dereferencing).

An emerging approach to analyzing heap programs is to
use invariants written in separation logic (SL) to represent
memory structures [41, 47]. SL extends classical logic and
allows for compact and precise representations of program
semantics and reasoning to be localized to small portions
of memory. In the last decade, research in SL has grown

https://doi.org/10.1145/3314221.3314634
https://doi.org/10.1145/3314221.3314634

PLDI ’19, June 22-26, 2019, Phoenix, AZ, USA

rapidly and led to practical techniques used in tools such as
the Facebook Infer (FBInfer) analyzer [17].

Most existing SL works focus on static analyses to obtain
sound results, and therefore can only consider simple classes
of invariants or programs, e.g., to support the goal of “move
fast to fix more things” [8, 40], FBInfer only considers simple
data structures and restricts supported language features.
Moreover, while many static analyzers, including FBInfer,
compute SL invariants internally to verify programs, we are
aware of only a few researchers who have investigated reify-
ing those invariants for consumption by developers, and
even then only for a restricted language of list manipulat-
ing [32] or tree traversing programs [5]. Also, most static SL
tools aim to infer sufficiently strong invariants to achieve a
specific goal, e.g., to prove memory safety or (programmer-
provided) postconditions, and thus are not well suited for
discovering useful invariants to help understand code that
lacks such formal specifications.

In this work, we introduce SLING (Separation Logic
Invariant Generation), a tool that dynamically discovers
SL invariants for heap programs. SLING takes as inputs a
program, a location of interest, a set of predefined predicates
defining data structures, and a set of sample inputs. SLING
next runs the program on the inputs and uses a debugger
to obtain traces capturing memory information of the vari-
ables at the considered location. These traces consist of the
contents of the stack and heap of the program. SLING then
iteratively analyzes variables using these traces to compute
invariants. For each pointer variable, SLING generates SL
formulae using predefined predicates to model the traces de-
scribing memory regions related to the variable. SLING also
propagates computed information to improve the analysis
of other variables in subsequent iterations. Finally, SLING
combines the obtained formulae into a final invariant that
represents the explored memory regions.

We use SLING to infer invariants for 157 C programs
taken from two existing benchmarks [51] and [6]. These
programs implement basic algorithms over standard data
structures (e.g., singly-linked, doubly-linked, circular lists,
binary trees, AVL, red-black trees, heaps, queues, stacks, it-
erators) and complex functions from open source libraries
and the Linux kernel that manipulate customized data struc-
tures. Preliminary results show that SLING can efficiently
generate invariants that are correct and more precise than
the documented invariants and specifications in these pro-
grams. Even when given incomplete traces, the tool can still
discover partial invariants that are useful for users. We also
show that SLING’s invariants can help reason about non-
trivial bugs and reveal false positives in modern SL static
analyzers. We believe that SLING strikes a practical balance
between correctness and expressive power, allowing it to
discover complex, yet interesting and useful invariants out
of the reach of the current state of the art.

Ton Chanh Le, Guolong Zheng, and ThanhVu Nguyen

typedef struct Node {
struct node *next, *prev;
} Node;

1
2
3
4
5 Node *concat(Node *x, Node *y) {
6
7
8
9

[L1]
if (x == NULL) {
[L2]
return y;
10 } else {
11 Node *tmp = concat(x->next, y);
12 Xx=->next = tmp;
13 if (tmp) tmp->prev = x;
14 [L3]
15 return x;
16 3
17}

Figure 1. Concatenating two doubly linked lists

2 IMustration

We describe SLING using the function concat shown in
Figure 1. This function recursively concatenates two doubly
linked lists x and y and returns (i) y when x is empty or (ii)
a new doubly linked list by appending y to the tail of x.
Although simple, concat requires several subtle precon-
ditions over its inputs to work properly. First, x must be a
nil-terminated list, i.e., the next field of its tail node is NULL,
otherwise concat may not terminate when x contains a cy-
cle or may refer to an unallocated memory region when the
next field of x’s tail node is a dangling pointer. Second, x
and y must be non-overlapping, i.e., point to lists in separate
memory regions, otherwise the resulting list contains a cycle.
These conditions can be difficult to analyze or even to specify
because they involve dynamically-allocated data structures
and their separations in memory. SLING aims to automati-
cally discover such preconditions at program entrances and,
more generally, invariant properties at arbitrary program
locations, including postconditions and loop invariants.

2.1 Heap Predicates

SLING infers invariants expressed as formulae in separation
logic (SL) to describe properties of heap-manipulating pro-
grams. Comparing to existing works for heap programs [26,
48], SL provides concise and expressive syntax and semantics
to describe memory (shape) information [41, 47].

To analyze heap programs, SL works often use inductive
heap predicates to compactly represent recursively-defined
data structures. For concat, we use the predicate dll to define
doubly linked lists:

dli(hd, pr, t1, nx) & (emp A hd=nx A pr=tl)
vV (Ju. hd—u, pr = dll(u, hd, t1, nx))

SLING: Using Dynamic Analysis to Infer Program Invariants . ..

The parameters hd, tl, pr, and nx point to the list’s head, tail,
previous, and next element, respectively. The definition of
dIl uses the built-in predicate emp to represent an empty

heap, e.g., a NULL list, and the singleton predicate xNﬂ)enx, pr
to denote a memory cell that a variable x of type Node shown
in Figure 1 points to (nx and pr correspond to the next and
prev fields of x, respectivelyl).

Conceptually, dll states that a doubly linked list is either
an empty or a non-empty list, which is recursively defined
by having the head hd point to a doubly linked list whose
head node is u. In the latter case, the separating conjunction
connector * specifies the separation of memory regions mod-
eled by hd’s singleton predicate and v’s dll predicate, i.e., the
heaplets of hd and u are disjoint.

SLING uses such heap predicates to discover invariants
and specifications of heap programs. For concat, SLING uses
dll to generate the precondition on line 6 and the postcondi-
tion on line 8 and 14 in Figure 1 as

pre = 3p, u, v. dll(x, p, u, nil) * dlI(y, nil, v, nil)
post = Fo. dll(y, nil, v, nil) A x=nil A res=y Vv
Fp, u, v. dll(x, p, u, y) = dll(y, u, v, nil) A res=x

These pre and postconditions form a valid specification
for concat. The precondition requires that inputs x and y
point to two disjoint, nil-terminated doubly linked lists. Note
that unlike y, the dIl of x shows that it can take any arbitrary
previous pointer, i.e., the existential argument p, because this
pointer changes across the recursive call on line 11.

The postcondition ensures two exit conditions: (i) when x
is empty, the return value res is y, and (ii) otherwise, res = x
is the result of appending y to x by changing the next element
of x’s predicate from nil to y. Also, note that the previous
field of y now points to the tail element of x. Lastly, the
postcondition states that the separation of the heaps of x and
y is preserved, i.e., concat only changes the field values of
the lists and does not alter the allocated memory.

Inductive heap predicates such as dll are standard in SL
(e.g., provided by the users or predefined in an analyzer [7,
24, 29, 33]) and compactly capture crucial shape properties
(e.g., doubly linked lists are acyclic). In addition, compared to
normal, non-SL predicates such as isOdd or x > y, checking
SL heap predicates is nontrivial because we have to “un-
fold” data structures recursively and find concrete values
to instantiate the existential quantifiers, e.g., the pre and
postconditions above require finding the correct quantified
variables and parameters in dll.

2.2 Traces

Given a program annotated with locations of interest, SLING
runs the program on sample inputs to collect execution traces.

. . Node
1When the context is clear, we simply use x+>nx, pr for x—nx, pr.

PLDI ’19, June 22-26, 2019, Phoenix, AZ, USA

hy, hy, h3
stack heap s1
x=oxot || [DX exer
x = 0xe1 ‘MW 0xe1 ¢ tmp = 0x02 || 5| |-
ST 1 y = 0x04 g ‘g’
g g res = 0x01
[1] oxe2
[1] exe2 s2 A
o [}
213 x=0x02 || 3| |&
% 5 ¢ tmp = 0x03
2 y = 0x04 L 0x03
M 0x03 res = 0x02 5 S
o Qo
x o
(ad o
S3
e [ox04
y = 0x04 M—»{ | oxos X =X
¢ tmp = 0x04 3 P
3l B 3 y=0x04 || 5| |5
a res = 0x03

(a) a trace at L1 (b) sequence of traces at L3

Figure 2. Traces collected at L1 and L3 in concat.

Currently, we use the LLDB debugger [31] to observe execu-
tion traces containing memory addresses and values of the
variables in scope at considered locations?.

Figure 2a shows two doubly linked lists x and y of size 3
and 2, respectively. When running on these inputs, SLING
records traces such as those given in Figures 2. Figure 2a
shows the trace obtained in the first iteration of concat
at L1. The trace contains information about both the stack,
containing values of variables accessible at this location,
e.g., x=0x01,y=0x04, and the heap, containing allocated
memory cells reachable from the stack’s variables, e.g.,
0x01+—Node{next:0x02;prev:nil}.

Figure 2b shows three set of traces collected at L3 for the
first three iterations of concat. Note that the values of x
and tmp are different in the stacks because x and tmp change
across the recursive calls in concat. However, the heap is
similar because concat does not change the heap, e.g., delete
or create cells, and all memory cells are still reachable from
the stack variables. Moreover, the stack at L3 contains a ghost
variable res, which stores the return value of the function?.

2.3 Inference

SLING infers invariants consisting of SL predicates such as
dll over variables at a location of interest. For each (pointer)
variable, SLING explores relevant memory regions in ob-
served traces to compute invariants for that variable. Finally,
SLING combines the computed invariants to model the whole
explored memory regions.

Postcondition We now show how SLING computes the
postcondition at L3 using the predicate dll and the traces

2These "traces", which are snapshots of program states, are often referred
to as the stack-heap models in SL literature, which we review in Section 3.
3This value is captured when the LLDB debugger steps out of the function
and jumps back to its call site.

PLDI ’19, June 22-26, 2019, Phoenix, AZ, USA

AY /

:r‘% ox01 | | |

55— -7 =) > I = > !

2|2 212 (oA 2|2 !

-+ Q Kad aQ | s [} !

|

tp —{ | [1] oxe2 f’esﬁ‘\»{ 1] oxe2 J H | oxe2 1k

2l B 3l B 313 |

25 2 & '3 s |

: |

L exes e > exos 5 — T oxes

s > 2 > \g I P
2B 2 2 B

v = T1] oxes y =L oo {11 oxos

3| [z 3| I3 3| B
218 A 218

X1 oxes X[exes XU oxos

Figure 3. Sub-heaps of x (in blue dashed boxes) and their
boundaries (nil and the variables in red). The common bound-
ary of these sub-heaps is {x, tmp, res, nil}.

shown in Figure 2b. For demonstration we assume that
SLING analyzes the variables at L3 in the order x, tmp, y, res.

From given traces, SLING first computes the sub-heaps
of x and their boundaries. The sub-heaps contain memory
cells reachable from x but not pointed to by other stack vari-
ables. The boundaries of x’s sub-heaps contain x itself, the
nil pointer if it is reachable from x, and all variables reach-
able from x or its aliasing pointers. Next, SLING takes the
intersection of the boundaries to obtain the common bound-
ary, which consists of variables used to compute invariants
in the next step. Figure 3 shows the computed sub-heaps
hi={0x01}, hy = {0x01,0x02}, and h; = {0x01, 0x02, 0x03}
over the three traces of x and their respective boundaries
{x, res, nil, tmp}, {x, res, nil, tmp}, and {x, res, nil, tmp, y}.
Their common boundary is {x, res, nil, tmp}.

From computed sub-heaps and boundary variables,
SLING searches the predefined predicates for formulae
that are consistent with sub-heap traces using boundary
variables. For each predicate, SLING creates candidate for-
mulae by instantiating predicate parameters with boundary
variables. It does so by enumerating different subsets of
boundary variables as predicate parameters. For subsets
of size smaller than the number of parameters, SLING
introduces fresh existential variables to instantiate the pred-
icate. In our example, SLING enumerates formulae such as
Auy. dlI(x, nil, tmp, u1), Juy. dlI(x, nil, ug, tmp),

Next, SLING then uses an SMT-based model checker to
check each candidate formula against the given sub-heaps.
The checker either refutes the formula, which is then dis-
carded, or accepts it, which SLING then considers as a valid
formula over the sub-heaps. Intuitively, accepted formulae
represent partial invariants computed from memory regions,
e.g., the sub-heaps, related to the analyzed variable.

Ton Chanh Le, Guolong Zheng, and ThanhVu Nguyen

In our example, among the generated candidates, the
checker accepts the formula F, = Juy, up. dll(x, uy, u, tmp).
This formula shows that x is a doubly linked list to the next
pointer tmp. The existential variables uy, u; indicate that
SLING cannot find concrete stack or nil variables for the
second and third parameters of dll from the traces.

Although F, holds over the given sub-heaps, it might not
generalize to the entire heap in the observed traces. Thus,
when analyzing Fy, the checker also computes a residual
heap, which represents the part of the heap that is not mod-
eled by Fy. The checker also computes a mapping from exis-
tential variables to concrete memory addresses from given
traces. SLING propagates these details to improve the analy-
ses of other variables in subsequent iterations.

SLING now continues with the other variables tmp, y, res
using the described steps and computed information (resid-
ual heaps and address mappings). For tmp, SLING computes
the sub-heaps and boundary {tmp, x, res, y}, and obtains
then the formula Finy, = Jus. dlI(tmp, X, us, y), which indi-
cates a doubly linked list from tmp to the next pointer y.
Also, observe that the previous pointer points to x, showing
the connection between this list and the one modeled by F.

Similarly, for the last two variables y and res, SLING ob-
tains the formulae F, = Juy, us. dll(y, uy, us, nil) and Fres =
emp. Fros is emp because every sub-heap reachable from
res is empty in the traces observed in the last iteration.

The obtained formulae Fy, Fy, Fmp, and Fres model sep-
arate sub-heaps, thus SLING combines them using the *
operator to form a shape invariant capturing the shape of
the memory at L3, e.g., connections among separate heaplets:

Fr3 = Juy, uy, us, ug, us, tmp.
dll(x, u, uo, tmp) = dll(tmp, x, us, y) * dll(y, us, us, nil).

Note that the constraint Fr..s = emp is discarded from the
conjunction. Also note that the local variable tmp is not in
the scope of the function’s exit, thus SLING considers it as
an existential variable in Fr3. In general, SLING only uses
the function’s parameters and the ghost variable res as free
variables in the function’s pre and postconditions.

SLING also examines analyzed information to find ad-
ditional pure (not related to memory) relations among the
stack and existential variables in the inferred formula. In this
example, SLING determines that res = X, indicating that
the return value at L3 is x. It also infers aliasing information
such as x = up, us = u4 from the address mapping. From these
additional equalities, SLING derives the final result:

F[, = 3uy, us, us, tmp. dlI(x, uy, x, tmp) =

dll(tmp, x, u3,y) = dll(y, us, us, nil) A res=x.
This result F/, is correct at L3 and even more precise than
(stronger) the postcondition shown in Section 2.1 when
x # nil: 3p, u, v. dlI(x, p, u, y) * dll(y, u, v, nil) A res =x. The
reason is because dll(x, uy, x, tmp) = dll(tmp, x, u3, y) in Fis
entails Jp, u. dll(x, p, u,y) in the given postcondition. The

SLING: Using Dynamic Analysis to Infer Program Invariants . ..

reversed direction of this entailment does not hold as it re-
quires a non-trivial condition x # y.

Precondition and Other Invariants Using the same in-
ference process over the traces obtained from the input x, y
given in Figure 2, SLING infers the precondition at location
L1 and the invariant at location L2 of concat as

’
FL1 = Juy, Uz, us, uy.
dll(x, uy, ug, nil) = dll(y, us, ug, nil) A uz =nil, and
’
F, = 3uy, up.

dll(y, ug, ug, nil) Au; =nil A x=nil Ares=y.

These are the pre and postconditions shown in Section 2.1.
From these results, we obtain the specification of concat be-
cause the complete post condition is the disjunction F}, V F; ,.
In general, SLING can compute invariants at arbitrary pro-
gram locations by applying the described inference process
to traces obtained at those locations.

Depending on the program, we could create scenarios
where different orders of analyzed variables produce weaker
results. This is because the propagated residue information
affects the computation of boundary variables and thus the
instantiations of parameters in the predicates. SLING pre-
vents these scenarios by using a simple heuristic that only
selects the next variables to analyze from those directly reach-
able from previously considered variables. This gives a fixed
order that works well in our experiments (Section 5.3).

3 Separation Logic

SL [26, 48] has been actively used to reason about imperative
programs that manipulate data structures. Crucially, SL uses
the separating conjunction operation * to describe the sepa-
ration of computer memory;, i.e., the assertion p *q states that
p and q hold for disjoint memory regions. Moreover, SL is
often equipped with the ability for users to define inductive
heap predicates (such as the predicate dIl used in Section 2
for doubly linked list). The combination of the * operator
and heap predicates make SL expressive enough to model
various types of data structures.

Figure 4 shows the syntax and semantics of the SL formu-
lae we consider in this work. These represent the standard
symbolic-heap fragment of SL [7, 49, 50] with user-defined
inductive heap predicates.

Syntax We denote x as a variable, k, e as an integer con-
stant and an integer expression, respectively, nil as a constant
denoting a dangling memory address (null), and a as a spa-
tial expression modeling a memory address. The predicate
emp models an empty heap, the singleton heap predicate

xii>t1, ..., I, models an n-field data structure type = where x
points to, and the inductive heap predicate p(t1, ..., t,) mod-
els a recursively defined data structure. The spatial formulae
% consist of these predicates and their compositions using

PLDI ’19, June 22-26, 2019, Phoenix, AZ, USA

the * separating conjunction operator. IT denotes pure formu-
lae in linear arithmetic, which do not contain any predicates.
Note that we can negate the presented formulae to obtain
formulae involving disjunctions, universal quantifiers, and
other comparison relations.

Semantics Given a set Var of variables, Type of types, Val
of values, and Loc C Val of memory addresses, an SL stack-
heap model, i.e., concrete trace, is a pair of a stack model s,
which is a function s: Var — Val, and a heap model h, which
is a partial function h: Loc — (Type X Val*). We write [II]
to denote the valuation of a formula IT under the stack model
sand s, h E F to denote a model s, h satisfies a formula F.
Moreover, dom(h) denotes the domain of h, hy # h, denotes
h; and h, have different domains, and h; o hy denotes the
union of two disjoint heaps h; and hy, and [f | x : y] indicates
a function like f but returns y for input x. We also define the

heap union and difference operators over two sequences of
def

stack-heap models as (s;, b)), @ (s;, b)), = (si, hy o h))T
and (s;, hy)7, \ (si, BT, «f (s, by \ BT, respectively.
Model Checking We follow the technique given in [7] to
implement a model checker, which checks if a formula F is
satisfied by a stack-heap model s, h and returns a residual
heap h’, i.e., memory regions in h not modeled by F, and an
instantiation / that maps existential variables in F to concrete
addresses in the model. These checking and instantiation
tasks are encoded as logical formulae solvable using the Z3
SMT solver [12].

Note that the model checking technique proposed in [7]
does not return the instantiation ¢, which is needed by SLING
to compute equalities among variables in F. To obtain ¢, we
slightly redefine the problem with a new satisfaction relation:

Definition 1 (Satisfaction Relation with Existential Instan-
tiation). The relation s,h [, F is the satisfaction relation
s, h E F except that the value of an existential variable in F
is obtained from the instantiation i, which is a function from
Var to Val similar to the stack model.

We also lift this relation to sequences of stack-heap models

and instantiations as (s;, h;)}", ':(’i)?:l FEVi. si, hi Ey, F.

Definition 2 (Symbolic-heap Model Checking). A reduction
s,hl-F~ Rk viswvalid ifh’ C hands,h\ h’' F, F.

Definition 2 redefines the model checking reduction relation
to return, in addition to the residual heap model h’, an in-
stantiation : of existential variables in F that satisfies the
relation s, h \ b’ E, F in Definition 1.

4 The SLING Algorithm

Algorithm 1 shows the implementation of SLING. Given a
program C, a set P of predefined inductive heap predicates,
a target location [in C, and a test suite T, SLING returns a
set R of SL formulae satisfied by observed traces at I.

PLDI ’19, June 22-26, 2019, Phoenix, AZ, USA

Ton Chanh Le, Guolong Zheng, and ThanhVu Nguyen

Syntax H Semantics
e = k|x| —e|leir+ex|k-e Integer exps s,h F emp iff dom(h)=o
a:= nil | x Spatial exps s,hF x|i>t1, ety it dom(h)={s(x)} and h(s(x)) = (z, {s(t1), ..., s(tn)})
Il := ai=az|e;=ey| ey <ey| Pure formulae s,h Ep(ty,....tn) iff s, hE F, whereF d:eg p(t1,...s tn)
—|H|H1/\H2|EIX.H s,hEZ 2, iff 3hy,hy.hi#hy Ahioha=hAs,hi EZ1 As,hy EX,
3= emp | xr;tl, vt | Spatial formulae || s,h F X ATl iff [II]]s=trueands,h EX
p(t1, .. tn) | 21 % 2o s,h F 3x.F iff Jveval.[s|x:v],hEF
F = S|IO|XAI|3x.F SL formulae

Figure 4. Syntax and semantics of symbolic-heap SL formulae.

Algorithm 1 The main algorithm of SLING

Input: A program C, a set of predefined predicates P, a test suite T,
and a program location [
Output: A set of invariants at [

1: SH « CollectModels(C, 1, T)

2: V « GetVars(l) > stack variables
3: R« {(emp, SH, (t; = {})ieT)} > initial result
4: for each pointer v in V do

5: R« {}

6: for each (F,SH, 1) in R do

7: SH4, SH;, B « SplitHeap(SH,v) » SHy, @ SH, = SH
8: Ry « InferAtom(v, SHy, B, P)

9: for each (F,,SH’,I’)in R, do > SH, \ SH’ Fy F,
10: R’ « R’ U{(F * F,,SH, ® SH”, & I)}

11: R« {(InferPure(F, SH, 1), SH, 1) | (F,SH, 1) € R’}

12: return R

SLING infers invariants using the three main phases de-
scribed below. In the following we use the term stack-heap
models to refer to concrete traces.

Model Collection (line 1) SLING first calls CollectModels
to collect all stack-heap models observed at location [when
running the program over the tests in T. CollectModels uses
a software debugger such as LLDB to set a breakpoint at [
and inspect the memory layout when executing the program.
It then collects the set of stack-heap models SH from the
memory whenever hitting the breakpoint at .

Inference (lines 2-11) After obtaining the stack-heap
models at I, SLING performs a heap inference and then
a pure inference to derive a set of results satisfied by the
models. SLING uses an iterative refinement process over the
stack variables to infer invariants. At each iteration, SLING
updates the result set R with a tuple (F, SH, I), where the
formula F holds for the models analyzed in the previous
iteration, the set of stack-heap models SH captures the
residue of the initial heaps that are not modeled by F, and
the sequence | contains existential instantiations which map
the existential variables in F to concrete memory addresses.

In each iteration, given a stack variable v € V and a tuple
(F,SH, 1) € R, SLING derives a set of atomic heap predicates
(i-e., inductive heap predicates, singleton heap predicates,

or emp), which models the sub-heaps in SH that contain
memory cells reachable from v. The heaps modeled by these
predicates and F are disjoint, thus we can strengthen F with
each predicate using the * operator of SL. Intuitively, SLING
splits the original stack-heap models into multiple sub-heaps,
which are pointed-to by distinct (non-aliasing) stack vari-
ables. To model a sub-heap, SLING derives atomic formulae
from the given predicates and the stack variables related
to the sub-heap. Sections 4.1 and 4.2 describes the two sub-
procedures SplitHeap and InferAtom, respectively.

In addition to finding invariants describing shape proper-
ties, SLING infers equality constraints over stack variables
in V to represent pure properties. Section 4.3 describes the
InferPure procedure that performs this step.

Validation When we discover both pre and postcondi-
tions, we combine them to obtain program specifications. We
also leverage the frame rule of SL to check if this combina-
tion is consistent with respect to the corresponding residual
models. Thus, when inferring invariants at multiple return
statements, SLING has an additional step that combines and
validates formulae inferred at these locations. We describe
this step in Section 4.4.

4.1 Heap Partitioning

Given a sequence SH of collected stack-heap models, SLING
calls SplitHeap to splits the heap in each model s;, h; € SH
into smaller sub-heaps so that each of them can be mod-
eled by atomic heap predicates. Moreover, SplitHeap returns
the common boundary of these sub-heaps, which consist
of the nil and stack variables that are subsequently used to
determine the arguments for these atomic heap predicates.

SplitHeap uses a depth-first search to traverse the pointer
fields of memory cells from a root pointer to partition the
heap model h; into two non-overlapping parts: sub-heap
h; and the remaining sub-heap h]’ = h; \ h}. The sub-heap
h; contains memory cells reachable from the root pointer
variable up to the nil pointer or memory cells pointed to by
other stack pointer variables. We call these pointer variables
or the nil pointer the boundary between the sub-heap h;
and the other memory regions in the heap h;. The sub-heap
h{ may contain memory cells unreachable from root and

SLING: Using Dynamic Analysis to Infer Program Invariants . ..

Algorithm 2 InferAtom: Inferring Atomic Predicates

Input: A stack pointer root, its sub-models SH o0 and their
common boundary B, and a set of predefined predicates P
Output: A set of atomic formulae modeling the sub-models and
their residue information
1: R« {}
2: for each p(ty, ..., ty) in P do > Consider a predicate p
3: = {A| A € PowerSet(B) A|A| < nAroot €A;}
4 for each A in A do > Consider a subset of B
5: {ut, s um}m=n—|a| < fresh(n—|A[)
6: A<—AU{u1,...,um}m=n_|A|
7 for each permutation (ky, ..., k;) in Perm,(A) do
8 if V1<i<n.k; € B — type(k;) <: type(t;) then
9: F — Fuy,...,um. p(k1, ... kn)
10: if Vs;, h; € SHyoot. 81, hi |- F ~» hi,1; then
11: R RU{(F, ((si, h)))is (1)i)}
12: if Vsj, hj € SHyoot. |hi| = 1 then
13: R « R U InferSingleton(root, SH,o0¢)
14: if R = @ then R « {(emp, SHyo0r, (ti = {})i)}

15: return R

those reachable from root, but also pointed-to by other stack
variables non-aliasing with root.

For the concat example, Figure 3 illustrates that the
boundaries of the sub-heaps h], h;, and h; of the root variable

x are {x, res, nil, tmp}, {x, res, nil, tmp}, and {x, res, nil, tmp, y},

respectively. Their common boundary is {x, res, nil, tmp}.

4.2 Inferring Atomic Heap Predicates

Given the sequence of sub-models SH, o, of the root pointer
and its boundary B, the function InferAtom shown in Algo-
rithm 2 computes a set of atomic predicates satisfied by all
sub-models in SH,,,;. These atomic (shape) predicates con-
sist of either (i) inductive heap predicates whose definitions
are given in the set P (lines 2—11), (ii) singleton predicates
of the root pointer when the heap size of all sub-models
in SH;o0¢ is 1 (lines 12—13), or (iii) the emp predicate with
SH; o0+ as the residual models when it cannot derive any
predicates in the two former forms (line 14).

Inductive Heap Predicates SLING discovers instances of
each predefined predicate p(ty, ..., ;) € P. For optimization,
we filter the set P of predicate definitions to contain only
those that have at least one parameter having the same type
as the root pointer. Also, for simplicity of presentation, we
assume that the parameters ti, ..., t, of p are pointer types.
SLING chooses potential arguments of predicate p from
the common boundary B of all sub-heaps in the sub-models
SH 0. It searches for these arguments from all permuta-
tion of B’s subsets whose size is less than or equal to n and
contains root (line 3). The inferred inductive predicates can
contain as many stack variables as its arguments, thus we
examine each subset in the ascending order of their size.

PLDI ’19, June 22-26, 2019, Phoenix, AZ, USA

Also, to reduce the search space, we only consider a permu-
tation (ky, ..., k,) if it is type-consistent with the parameters
t1, ..., tn of the predicate p. That is, if k; is a stack pointer
variable in B then its type must be a subtype of the corre-
sponding parameter t;’s type (line 8).

Next, we construct a formula F from the inductive heap
predicate p(ky, ..., k,) (line 9). A formula F is valid if it is
successfully checked by all models in SH,,,; (line 10). This
validity check also returns a residual heap h; and an exis-
tential instantiation ¢; for each stack-heap model s;, h; in
SH;o0¢- They are respectively the member of the sequence
of residual models and the sequence of existential instanti-
ations associating with the valid formula F as an inference
result in the set R (line 11).

In the concat example, when selecting the argument set
{x, res, tmp, nil} € A, the algorithm derives the formula
Fy = 3u;. dll(uy, nil, x, tmp). This result shows that x is the
last node of doubly linked lists whose head is u; and its
next pointer is tmp. Moreover, F, models the whole sub-
heaps of x in Figure 3, i.e., all residue models have empty
heaps, when the existential variable u; is instantiated to
the address 0x01. As another example, when considering
another set of potential arguments {x, tmp} € A, we infer
Fy = Juy, uy. dlI(x, uy, up, tmp), indicating that x is the head
of a doubly linked list segment to tmp.

Singleton Heap Predicates We only derive singleton heap
predicates of root when there is a single memory cell in every
root’s sub-model in SH, o (line 12). We consider a z-typed

singleton predicate template of the form rootrsky, ..., kn. The
value of each field k; in the template is the common pointer
variable (including nil) pointing to the corresponding field
of every memory cell in SH,,,;. If there is no such variable,
we create a fresh existential variable for k; and update this
variable’s instantiation to the value of the corresponding
field in each model.

4.3 Pure Inference

The heap predicates derived in the previous steps mainly
present the heap memory, but not the relations of variables
within a predicate and among predicates in the overall results.
In these results, the heap predicates are solely related via the
common stack variables in their arguments.

We infer additional pure constraints over arguments of
the predicates by searching for equality constraints over
two different variables among stack variables, existential
variable, nil, and the special variable res if we are inferring
post-conditions which are satisfied by every stack model and
existential instantiation.

For example, we use this inference to obtain the relation
res = x about the return value of concat and other aliasing
information, e.g., those shown in Section 2.3.

PLDI ’19, June 22-26, 2019, Phoenix, AZ, USA

4.4 Validation

When obtaining multiple postconditions (e.g., at each return
statements), we combine them with the inferred precondi-
tions to derive program specifications. Next, we validate
these specifications using frame rule of separation logic, i.e.,

{P} C{Q}
{R*P} C{R=*Q}

This rule says that if a triple { P}C{Q} is valid (i.e., C executes
safely in the precondition P and its post-states satisfying the
postcondition Q) then the triple {R * P}C{R = Q}, in which
R is a frame modeling memory regions that are not manipu-
lated by C, also holds.

For example, if C is a function, then P and Q are the pre
and postconditions computed from the stack-heap models
observed at the entry and exit of C, respectively. As another
example, if C is a loop body, then P and Q, inferred from
the models collected at the loop’s head, are identical and
considered as a loop invariant.

According to the frame rule, if the inferred conditions P
and Q are valid, then we can expand the corresponding mem-
ory regions modeled by P and Q by the same memory regions
non-overlapping with them to obtain the whole memories
observed at the entry and exit C. Otherwise, the inferred
pair P, Q is considered invalid (spurious). Therefore, we can
check that the residual models corresponding to P and Q are
unchanged with respect to observed models to determine the
validity of this result.

In concat, we obtain the precondition F;, and two post-
conditions F;, (when x = nil) and F; , (when x # nil). For each
pair of a model collected at L1 and the corresponding model
collected at L2 or L3, we check if the residual heap in the
model at L1, which is not captured by F; ,, is the same as the
residual heap in model at L2 or L3, which is not captured
by F], or F],, respectively. For example, given the model
at L1 in Figure 2a and its corresponding model #; at L3 in
Figure 2b, the residual heaps corresponding to F/, and F/,
are both empty. On the other hand, in the last iteration of
concat (when x = nil), the residual heaps of F], and F}, both
contain three memory cells 0x01, 0x02, and 0x03.

4.5 Complexity

SLING is exponential in the number of predicates and their
parameters. In addition, the complexity of the general heap
model checking problem is EXPTIME [7]. Thus, checking
predicates over combinations of variables over many col-
lected stack-heap models can be slow. To improve perfor-
mance, SLING uses a type-checker (Algorithm 2, line 8) to
eliminate variable combinations having inconsistent types to
observed traces. The experiments in Section 5 also show that
only a few traces are needed to discover accurate invariants
and the Z3-based model checker performs efficiently over
these traces.

Ton Chanh Le, Guolong Zheng, and ThanhVu Nguyen

5 Evaluation

SLING is implemented in Python and uses the LLDB debug-
ger [31] to collect traces at target program locations. Below
we evaluate SLING on C programs, but SLING also works
with programs written in other languages supported by
LLDB (e.g., C++ and Objective-C) or having debuggers capa-
ble of capturing memory information (e.g., JDB for Java [25],
PDB for Python [43], and GDB [20]).

Our experiments described below are conducted on a Mac-
Book with 2.2GHz Intel CPU, 16 GB memory, and runs Mac
OS. The source code of SLING and experimental data are
available at https://github.com/guolong-zheng/sling/.

5.1 Benchmark Programs

We evaluate SLING using the VCDryad benchmark [51] con-
sisting of 153 C heap-manipulating programs collected from
various verification works, e.g., SV-COMP [4], GRASShop-
per [46] and AFWP [23]. These programs range from those
that manipulate standard data structures (e.g., heaps and
trees) to functions from popular open source libraries (e.g.,
Glib, OpenBSD) and the Linux kernel that manipulate cus-
tomized data structures. Some of these programs have non-
trivial bugs (e.g., causing segmentation faults) intended to
test static analyzers. We also use 4 programs* from [7]. These
programs implement non-trivial algorithms using multiple
data structures (e.g., the Schorr-Waite graph marking algo-
rithm using binary trees).

In total, these benchmark programs contain a wide variety
of structures including singly-linked lists, doubly-linked lists,
sorted lists, circular lists, binary trees, AVL trees, red-black
trees, heaps, queues, stacks, iterators, etc. Moreover, these
programs contain documented invariants (e.g., pre and post-
conditions such as those given in Section 2.1), which we use
to evaluate SLING’s inferred invariants.

Table 1 shows these 157 programs (the last row shows the
4 programs from [7]). Column Programs lists the programs,
categorized by data structures that they use. Column LoC
shows the total lines of code of these programs. For example,
the first row lists 8 programs that use standard singly-link
lists (SLL) and have in total 168 LoC. In total, we have 157
programs in 22 categories with 4649 lines of C code.

5.2 Setup

For each program, we obtain traces, i.e., stack-heap models,
to infer invariants at program entrances for preconditions,
at loop entrances for loop invariants, and at program ex-
its for postconditions (we systematically obtain traces at
each return statement in a program). We use LLDB to set
breakpoints at these locations to collect traces.

To obtain traces, we run each program on empty and
randomly generated data structure inputs of a fixed size of 10.

“This benchmark has 6 programs, we use 4 of them and exclude the other 2
because they use concurrency which SLING currently does not support.

https://github.com/guolong-zheng/sling/

SLING: Using Dynamic Analysis to Infer Program Invariants . .

PLDI ’19, June 22-26, 2019, Phoenix, AZ, USA

Table 1. Experimental results. Programs denoted with * contain bugs preventing us to obtain traces. Programs denoted with '
cause SLING to timeout at certain locations. Italic programs have locations that cannot be reached using random inputs. Bold
programs contain locations with free statements that give invalid traces. SLL and DLL stand for Singly and Doubly Linked

Lists, respectively.

Programs Total Avg. Per Inv
LoC |iLocs |Traces| Invs |A/S/X|Time(s)| Single|Pred |Pure

SLL (8): append, delAll, find, insert, reverse, insertFront, insertBack, copy 168 | 26 226 30 8/0/0 | 40.54 0.37 |0.83 | 1.03

Sorted List (10): c.oncat, find, findLast, 1r?sert, m*sertlter, delAll, 268 25 194 32 9/0/1 | 137.32 039 | 2.40 | 0.67

reverseSort, insertionSort, mergeSort, quickSort

DLL (12): append, concat, meld, delAll, insertBack, insertFront, midInsert,

midDel, midDelError, midDelHd, midDelStar, midDelMid 160 | 31 168 238 |12/0/0 399.12 0.46 | 1.683.93

Circular List (4): insertFront, insertBack, delFront, delBack 97 11 14 42(16) | 2/2/0 11.43 0.81 | 1.19 | 2.10

Binary Search Tree (5): del, findlter, find, insert, rmRoot* 144 | 16 66 24 | 2/2/1| 24.02 0.50 | 1.21 | 1.54

AVL Tree (4): aviBalance, del, findSmallest, insert 194 | 13 56 37 2/2/0 | 22.12 1.22 | 0.57 | 3.08

Priority Tree (4): del, find, insert, rmRoot 154 | 19 64 273 2/2/0 | 341.37 3.30 | 1.66 | 3.30

Red-black Tree (2): del*, insert 287 | 11 70 63 0/1/1 44.8 2.10 | 1.08 | 8.11

Tree il’raversgl (5): t*raverseInorder, traversePostorder, traversePreorder, 168 12 174 12 4/0/1 22.03 008 | 058050

tree2list, tree2listIter

glib/glist_DLL (10): find, free, index, last, 216 | 31 | 128 [435(20) 9/1/0 | 403.13 || 0 |2.61|7.29

length, nth, nthData, position, prepend, reverse

glib/glist_SLL (22): append, concat, copy, delLink, find, free, index,

insertAtPos, insertBefore, insertSorted, last, length, nth, nthData, 606 69 299 |382(11)|17/5/0| 879.35 0.56 | 2.28 | 2.07

position, prepend, rm, rmAll, rmLink, reverse, sortMerge, sortReal

OpenBSD Queue (6): init, insertAfter, insertHd, insertTl, rmAfter, rmHd 105 | 12 12 27(4) | 4/2/0 | 10.04 0.15 | 2.04|0.15

Memory Region (1): memRegionDIlOps 67 7 14 52 1/0/0 | 17.70 0.73 | 0.81 | 7.96

Binomial Heap (2): findMin, merge 117 54 89 | 0/2/0| 76.56 1.39 | 0.90 | 9.15

SV-COMP (Heap Programs) (7): gllf)cSlave, insertSlave, 19| 16 34 7 7/0/0 | 58.17 024 | 1.66 | 3.41

createSlave, destroySlave, add, del, init

GRASShopper_SLL (Iterative) (8): concat, copy, dispose, filter, insert, rm, 193 97 111 98(9) | 6/2/0 71.03 017 | 272 | 1.15

reverse, traverse

GRASShopper_SLL (Recursive) (8): concat, copy, dispose, filter, insert, rm, 173 | 24 118 4003) | 6/2/0 | 30.94 028 | 200! 11

reverse, traverse

. . -t .

GRASShopper_DLL (8): concat, copy, dispose, filter', insert, rm, 209 24 108 638(20) 5/2/1 | 803.58 0.04 | 2.95 | 850

reverse, traverse

GRASShopper_SortedLlst (14): conca?, CL?py, dlspose, ﬁlter, 1ns+ert, reverse,* 304 | 43 195 222(1) [10/2/2| 160.1 104 | 227 | 429

rm, split, traverse, merge, doubleAll, pairwiseSum, insertionSort", mergeSort

. i i

AFWP_SLL (11): create, delAll, find, last, reverse, rotate, swap, insert, del’, 264 | 25 39 94(11) | 7/3/1 71.04 018 | 173 | 1.85

filter, merge

AFWP_DLL (2): dll_fix, dll_splice 40 5 16 133 | 2/0/0 | 75.51 0.02 | 2.96 | 6.67

Cyclist (4): aplas-stack, composited4, iter, schorr-waite 506 32 360 132 1/3/0 | 165.26 0.27 | 0.63 | 0.67

For example, for the concat program in Figure 1 that takes as
input 2 doubly-linked lists, we generate 3 inputs consisting of
a nil list and two randomly generated doubly-linked lists a, b
of size 10. Then we run concat over all input combinations,
eg., (nil,a), (nil,b), (a,b),.... Although these inputs
are random and relatively small (size 10), the benchmark
programs often modify and loop over data (e.g., as in concat),
allowing us to generate sufficient and diverse traces.

For each category shown in Table 1, we adopt the pred-
icate definitions given for that data from the benchmark
programs, e.g., all programs DLL use the dll inductive predi-
cate shown in Section 2. The shape and complexity of these
predicates vary, e.g., dll has 4 parameters, 1 singleton predi-
cate, and 1 inductive predicate, and the treeSeg predicate
has 2 parameters, 2 singletons, and 4 inductive predicates.

Programs in several categories such as SV-COMP and
Cyclist use complex nested data structures, which are
data structures whose fields are other data structures. The
predicates for these data structures involve multiple predi-
cates that are quite complex, e.g., the iter predicate has 10
parameters, 5 singleton and 6 inductive predicates.

5.3 Results

Table 1 shows our results. Columns iLocs, Traces, and Invs
lists, for programs in each category, the total number of
target locations, obtained traces, and generated invariants,
respectively. Column Invs also lists the number of spurious
invariants in parentheses (rows with no such parentheses
have no spurious invariants). Finally, column Time lists the

PLDI ’19, June 22-26, 2019, Phoenix, AZ, USA

total analysis time in seconds (including program execution,
trace collection, and invariant inference).

For several programs, we were not able to obtain traces
at considered locations using random inputs and thus could
not infer invariants at those locations. Column A/S/X shows
the number of programs where we obtained traces at all
considered locations (A), obtained traces for some locations
or inferred spurious results (S), and could not obtain traces
or invariants at some locations (X). For example, for the 5
programs using binary search trees, we obtained traces at all
considered locations in 2 programs, obtained traces at some
locations in 2 programs, and could not obtain any traces in
one program (quicksort).

The last three columns in the table give additional details
about the generated invariants. Columns Single, Pred, and
Pure list the average numbers of singleton predicates (e.g.,

xnrcﬂenx, pr), inductive predicates (e.g., dll), and pure equali-
ties (e.g., x = res) found in the invariants, respectively.

In total, SLING generated 3214 invariants in 487 target
locations (average 6.60 invariants per location). These invari-
ants consists of 309 preconditions, 2442 postconditions and
463 loop invariants. The total run time of SLING is 3866.06s
for 149 programs® (average 25.95s per program and 1.2s per
invariant). The time to run the program and collecting traces
is negligible (about a second for all programs).

Out of 157 programs, we were not able to obtain any traces
for 5 programs (marked with * in the table). These programs
contain bugs that immediately result in runtime errors such
as segmentation faults (thus we obtained no traces and in-
ferred no invariants). For 15 programs (italic text), we could
not reach certain return branches using random inputs and
thus were not able to obtain traces or infer invariants at
those locations. For 3 programs (marked with {), we were
able to generate pre and postconditions, but not loop invari-
ants. For these programs we hit loops more frequently than
program entrance/exit points and thus obtained many traces
for loops. Checking generated formulae over many traces
is expensive (Section 4.5) and appears to cause Z3 to stop
responding. Finally, for 17 programs (bold text), we obtained
invalid traces and therefore generated spurious invariants.
This is an interesting behavior of running C programs and
the LLDB debugger: a free(x) statement does not immedi-
ately free the pointer x so LLDB still observes (now invalid)
heap values of x in the execution traces. Thus we conserva-
tively consider all generated invariants depending on these
traces spurious and report them in Table 1.

For other programs (and those where we only obtain traces
at certain locations), we manually analyzed and compared
SLING’s generated invariants to documented ones. First,
we found that all generated invariants are correct, i.e., they
are true invariants at the considered locations. Thus, the

5We exclude the 5 buggy programs that produce no traces and 3 programs
that cause Z3 to time out.

Ton Chanh Le, Guolong Zheng, and ThanhVu Nguyen

spurious results reported in Table 1 are only those caused
by invalid traces as described above. Second, our results
either matched (syntactically or semantically equivalent)
or, in many cases, were stronger than the documented in-
variants. For example, for SLL/reverse, we inferred the
documented postcondition s11(res) and the additional con-
straints x = nil A x =tmp showing that the header of the
input list x becomes the tail of the resulting list. In many
similar cases, we achieved stronger results by inferring both
the expected invariants and additional equalities.

A potential reason for these sound results is because
SLING only infers shape properties using inductive pred-
icates and pure equalities. These properties have strict
patterns and thus a property that holds for the observed
traces will likely hold for others. We also do not consider
general disjunctive invariants or numerical relations (e.g.,
only check equivalences among memory addresses and
do not consider other relationships such as the address of
x is greater than that of y). Existing numerical invariant
studies [38, 39] have shown that dynamic analysis often
produces many spurious invariants involving disjunctions
and general inequalities.

Although we tried our best to carefully check all generated
results, the process of checking many complex SL invariants
manually is time-consuming and difficult. In future work,
we will use an automatic verifier that supports SL formulae
to check SLING’s invariants (see additional details in Sec-
tion 6). Moreover, we might be able to leverage test-input
generation techniques, e.g., symbolic execution with lazy-
initialization [28] or SL predicates [27], to construct smart
inputs, which can explore hard-to-reach program paths to
infer better invariants.

5.4 Uses of Inferred Invariants

Dynamically inferred invariants can help users understand
programs (e.g., discovering loop invariants, pre and postcon-
ditions for unknown programs) and gain confidence about
expected properties (e.g., the generated invariants met the
expectation). They can also be used to catch regression bugs:
the user instruments these invariants as assertions in code to
detect changes that break these assertions when the program
run®. Existing works also list many other uses of dynamic
invariants including documentation, complexity analysis,
fault localization, and bug repair [1, 15, 37, 45]. Below we
show two concrete uses of SLING’s SL invariants.

Explaining Bugs Although SLING cannot generate inputs
to reach a buggy location, it can, when given such inputs,
discover useful invariants to alert and help the developer
analyze that bug. For Red-black Tree/insert, we obtained
an invariant that appears too “simple”. Manual inspection

%The work in [36] shows how to encode SL formulae, which contain non-
standard operations such as *, to executable functions that can be used
assertions in code to enable run-time checking.

SLING: Using Dynamic Analysis to Infer Program Invariants . ..

showed that the inferred invariant is indeed correct: the pro-
gram always crashes after the first iteration, thus the inferred
invariant only captures a portion of data operated during
the first iteration. For glib/glist_SLL/sortMerge, SLING
reported an unexpected postcondition stating that the result
is always null. Manual inspection revealed this is correct and
is due to a (typo) bug in the program that returns list_next
instead of 1ist->next. For AFWP/d11_f1ix. c, the expected
loop invariant is Juy, ug, us, us. s11(i) = dll(j, ug, k, uz) *
dll(k, us, ug, nil), but SLING returned s11(i) Ai=hAk=j A
k =nil. Thus, the expected invariant shows that k can be
non-nil, but SLING’s invariant shows the opposite. Manual
inspection showed a (potentially seeded) bug, where a guard
checking for k = nil was commented out. Indeed, with this
guard uncommented, SLING inferred the expected invariant.

Identifying Spurious Warnings SLING’s invariants can
help check results from static analyzers, e.g., to understand
and gain confidence about reported results or detect potential
problems. The FBInfer tool mentioned in Section 1 is a well-
known SL static analyzer that produces warnings for mem-
ory safety bugs for iOS and Android apps. However, FBInfer
can produce spurious (false positive) warnings. For exam-
ple, when analyzing the correct version of the mentioned
glib/glist_SLL/sortMerge program, FBInfer reported a
memory leak after the assignment 1->next = NULL; at the
end of a loop because it thinks that 1->next is not reach-
able. However, SLING’s inferred invariants at that location
showed 1->next is a valid alias to other pointer variables
and reachable. Manual inspection confirmed that SLING’s
generated invariants are correct and the program has no
memory leak at that location. We applied the same tech-
nique and found similar spurious warnings from FBInfer for
7 other programs’.

Note that FBInfer also reported an error at another loca-
tion of sortMerge. However, this time, SLING’s invariants
confirmed the warning and even revealed that the error is
caused by a dangling pointer.

5.5 Comparing to the S2 Static Analyzer

We compare SLING to the static tool S2 [29], which uses the
state-of-the-art bi-abduction technique [9] in SL to generate
invariants proving memory safety of C programs, e.g., no
null pointer dereferencing and memory leaks. In addition to
memory checking, S2 attempts to find strongest specifica-
tions consisting of pre and postconditions for heap programs.

"Programs with spurious warnings: merge in Binomial_Heap, delBack
in Circular_List, copy in Grasshopper_SLL(Rec), insert in
GRASShopper_DLL, GRASShoper_SLL(Iter), GRASShoper_SortedList,
and Grasshopper_SLL (Rec).

PLDI ’19, June 22-26, 2019, Phoenix, AZ, USA

Table 2. Comparing SLING to S2.

Programs Total|Both |S2 | SLING | Neither
SLL 9 8 0 1 0
Sorted List 14 6 |0 6 2
DLL 13 0 0 13 0
Circular List 4 0 |0 2 2
Binary Search Tree 6 1 |1 2 2
AVL Tree 4 0 0 2 2
Priority Tree 4 1 1 1 1
Red-black Tree 2 0 |0 0 2
Tree Traversal 6 3]0 2 1
glib/glist_DLL 19 0 [o] 18 1
glib/glist_SLL 40 | 6 |0 29 5
OpenBSD Queue 0 |0 4 2
Memory Region 3 1 10 0
Binomial Heap 0 |1 1
SV-COMP 0 [0 0
GRASShopper_SLL (Iter) | 16 2 (0| 12 2
GRASShopper_SLL (Rec) | 8 3 |2 3 0
GRASShopper_DLL 16 0 |0 13 3
GRASShopper_SortedList| 29 1 |0] 24 4
AFWP_SLL 20 1 |0 15 4
AFWP_DLL 3 0 [0 3 0
Cyclist 4 0 |0 1 3
[Total Sum [237 [33 [5] 162 [37 |

We compare S2 to SLING using the same C benchmark
programs® listed in Table 1. S2 only supports shape invari-
ants, thus we only compare shape invariants generated by
the two tools and ignore the pure invariants generated by
SLING. Moreover, S2 does not infer invariants at arbitrary
locations like SLING, instead it attempts to find complete
specifications (involving both pre and postconditions) and
loop invariants. Thus, we do not consider invariants gener-
ated at individual locations as shown in Table 1 and instead
consider specifications as a whole and loop invariants. Note
that each program has a specification but only programs with
loops have loop invariants. As with SLING, we manual ana-
lyze the results of S2 and compare them to the documented
invariants’.

Table 2 shows the comparison results. Column Programs
lists the program categories, similarly to those listed in
Table 1. Column Total lists the number of documented
properties consisting of specifications and loop invariants
for the programs in the corresponding category. The next
four columns list the respective numbers of properties that
Both tools can generate, S2 can generate but SLING cannot,
SLING can generate but S2 cannot, and Neither tools can
generate. For example, the 10 programs in Sorted List
have 14 properties (10 specifications and 4 loop invariants),

8Several of these programs, e.g., those in SLL, DLL, and Binary trees, are
also used in [29] to evaluate S2’s capability of proving memory safety.
9We use these documented, verified invariants as “ground truths” and
check if S2’s results can match them. It is possible that these invariants are
incomplete and not the “best” and thus non-matching results from S2 do
not necessarily mean they are worse than these invariants.

PLDI ’19, June 22-26, 2019, Phoenix, AZ, USA

from which there are 6 properties that both tool found, none
that only S2 found, 6 that only SLING found, and 2 that both
fail to find. Finally, S2 takes less than a second for all but
the 4 concat programs in the GRASShopper categories, from
which S2 appears to stop responding.

The last row of Table 2 summarizes the results. First, both
tools discovered and failed about 14% and 15% of the prop-
erties, respectively. Properties found by both tools are from
simple recursive programs with singly-linked lists and trees.
For programs containing properties that neither tool found,
we observed no patterns and different failure reasons, e.g.,
for SLL/quicksort, S2 did not produce any specification
while SLING inferred no properties due the program crashed
and produced no traces. Next, S2 found 5 properties that
SLING did not. These properties are mostly in programs
where SLING obtained incomplete or spurious results due to
lack of traces, e.g., binary_search_tree/find_rec.c, or
the “free” problem, e.g., GRASShopper/rec/dispose.c (de-
tails in Section 5.3). Finally, SLING found many properties
that S2 did not (162/237). For these properties, which often
come from complex programs with rich data structures, S2
either completely failed to produce them or produced much
weaker than expected results.

In summary, SLING found more documented invariants
comparing to S2. We find this result encouraging as it shows
the competitiveness of SLING to static analyzers.

6 Related Work

SLING is inspired by the well-known dynamic invariant tool
Daikon [14, 15]. Daikon comes with a large list of invariant
templates and predicates, tests them against program traces,
removes those that fail, and reports the remains as candidate
invariants. Recently, several techniques (such as PIE [42],
ICE [19], DIG [38], and SymInfer [37]) have been developed
to infer numerical invariants using a hybrid approach that
dynamically infers candidate invariants and then statically
checks them against the program code. These approaches
do not consider SL invariants for memory shape analysis.
Static program analysis in SL has rapidly gained adop-
tion from both academia and industry in the past decade.
MemCAD [22] and THOR [33, 34] reason about shape and
numerical properties of programs, but generate invariants
for a restricted language of list manipulating programs [32].
FBInfer [8, 17] uses bi-abduction to generate invariants to
detect real memory bugs, but only supports simple structures
(e.g., linked lists) and restricted language features (e.g., no
arithmetic). CABER [6] and S2 (described in Section 5.5) also
use bi-abduction to offer more general, but more expensive,
approaches to infer shape properties. These tools do not con-
sider invariants at arbitrary locations: CABER only analyzes
preconditions and S2 only infers pre and postconditions.
The data-driven tool DOrder [52] generates specifications
for data structures in OCaml. Given the definition of a data

Ton Chanh Le, Guolong Zheng, and ThanhVu Nguyen

structure, DOrder generates predicates capturing shape and
ordering relations among data (e.g., element x is reachable
from element y or the value x appears in the left subtree of
a node containing the value y), learns specifications from
predicates and in/output data, and verifies specifications
using a refinement type system. SLING makes an orthogonal
contribution in finding a different form of shape properties
to express sharing and aliasing information, e.g., nodes x
and y point to (sub)trees in separate heaps.

The tool Locust [5] hybridizes dynamic and static analyses
to infer SL invariants for programs written in a restricted
language. To infer an invariant, Locust expands the syntax of
an SL formula using a machine learning model trained from
a large set of data. Locust iteratively refines inferred invari-
ants using counterexamples obtained by the Grasshopper
static verifier [46]. Locust is mainly evaluated on example
programs with singly-linked lists and binary trees and does
not support more complex data structures (e.g., Locust does
not support doubly-linked list and returns no results when
applied to our concat example). The tool also relies on an
expensive training process over large data sets.

Finally, automatic verification tools such as HIP [10],
Grasshopper [46], Verifast [24], and VCDryad [44] can
prove given SL specifications and invariants in heap-based
programs. In future work, we intend to use these tools to
automatically check SLING’s inferred invariants.

7 Conclusion

We introduce a new dynamic analysis to infer SL invariants
for heap-manipulating programs. The approach is based on
the insight that the heap at a program location can be par-
titioned into disjoint regions reachable from various stack
variables and that these regions can be modeled by atomic
SL formulae. Moreover, these formulae can be dynamically
inferred and then combined using separating conjunction.

We present SLING, a tool that implements these ideas
to generate SL invariants at arbitrary program locations.
SLING has several technical details including finding and
using boundary variables instantiate predicates, using an SL
model checker to compute both an instantiation for existen-
tial variables and the residual heap, and using the frame rule
to validate inferred specifications.

Preliminary results on a large set of nontrivial programs
show that SLING is effective in discovering useful invariants
describing operations over a wide variety of data structures.
We believe that SLING takes an important step in broadening
the space of properties about heap programs that can be dy-
namically inferred and exposes opportunities for researchers
to exploit new dynamic SL invariant analyses.

SLING: Using Dynamic Analysis to Infer Program Invariants . ..

Acknowledgments

We thank our shepherd Nadia Polikarpova and the anony-
mous reviewers for their feedback. The first author was sup-
ported by the Office of Naval Research award N000141712787.

References

[1] Tien-Duy B Le, David Lo, Claire Le Goues, and Lars Grunske. 2016. A
learning-to-rank based fault localization approach using likely invari-
ants. In ISSTA. ACM, 177-188.

[2] Thomas Ball and Sriram K. Rajamani. 2002. The SLAM Project: De-
bugging System Software via Static Analysis. In POPL. 1-3.

[3] Josh Berdine, Cristiano Calcagno, and Peter W. O’Hearn. 2004. A
Decidable Fragment of Separation Logic. In Foundations of Software
Technology and Theoretical Computer Science. 97-109.

[4] Dirk Beyer. 2017. Software Verification with Validation of Results. In
TACAS. 331-349.

[5] Marc Brockschmidt, Yuxin Chen, Pushmeet Kohli, Siddharth Krishna,
and Daniel Tarlow. 2017. Learning Shape Analysis. In Static Analysis
Symposium. 66-87.

[6] James Brotherston and Nikos Gorogiannis. 2014. Cyclic Abduction of
Inductively Defined Safety and Termination Preconditions. In Static
Analysis. 68-84.

[7] James Brotherston, Nikos Gorogiannis, Max I. Kanovich, and Reuben
Rowe. 2016. Model checking for symbolic-heap separation logic with
inductive predicates. In POPL. 84-96.

[8] Cristiano Calcagno, Dino Distefano, Jérémy Dubreil, Dominik Gabi,
Pieter Hooimeijer, Martino Luca, Peter W. O'Hearn, Irene Papakon-
stantinou, Jim Purbrick, and Dulma Rodriguez. 2015. Moving Fast
with Software Verification. In NASA Formal Methods. 3-11.

[9] Cristiano Calcagno, Dino Distefano, Peter W. O’Hearn, and Hongseok
Yang. 2011. Compositional Shape Analysis by Means of Bi-Abduction.
5. ACM 58, 6 (2011), 26:1-26:66.

[10] Wei-Ngan Chin, Cristina David, Huu Hai Nguyen, and Shengchao Qin.
2012. Automated verification of shape, size and bag properties via
user-defined predicates in separation logic. Sci. Comput. Program. 77,
9 (2012), 1006-1036.

[11] Byron Cook, Christoph Haase, Joél Ouaknine, Matthew J. Parkinson,
and James Worrell. 2011. Tractable Reasoning in a Fragment of Sepa-
ration Logic. In CONCUR. 235-249.

[12] Leonardo De Moura and Nikolaj Bjerner. 2008. Z3: An efficient SMT
solver. In TACAS. 337-340.

[13] Edsger W. Dijkstra. 1975. Guarded commands, nondeterminacy and

formal derivation of programs. Commun. ACM 18 (1975), 453-457.

Issue 8.

Michael D Ernst, Jake Cockrell, William G Griswold, and David Notkin.

2001. Dynamically discovering likely program invariants to support

program evolution. Transactions on Software Engineering 27, 2 (2001),

99-123.

Michael D. Ernst, Jeff H. Perkins, Philip J. Guo, Stephen McCamant,

Carlos Pacheco, Matthew S. Tschantz, and Chen Xiao. 2007. The

Daikon system for dynamic detection of likely invariants. Science of

Computer Programming (2007), 35-45.

[16] Daniel Fava, Julien Signoles, Matthieu Lemerre, Martin Schaf, and
Ashish Tiwari. 2015. Gamifying program analysis. In LPAR. Springer,
591-605.

[17] FBInfer 2018. The Infer Static Analyzer. http://fbinfer.com/.

[18] Cormac Flanagan and K. Rustan M. Leino. 2001. Houdini, an Annota-
tion Assistant for ESC/Java. In Formal Methods for Increasing Software
Productivity. 500~517.

[19] Pranav Garg, Daniel Neider, P. Madhusudan, and Dan Roth. 2016.
Learning Invariants Using Decision Trees and Implication Counterex-
amples. In POPL. 499-512.

(14

[l

(15

[’

PLDI ’19, June 22-26, 2019, Phoenix, AZ, USA

[20] GDB 2018. GDB: The GNU Project Debugger. https://www.gnu.org/
software/gdb/.

[21] Charles Antony Richard Hoare. 1969. An axiomatic basis for computer
programming. Commun. ACM 12, 10 (1969), 576-580.

[22] Hugo Illous, Matthieu Lemerre, and Xavier Rival. 2017. A Relational
Shape Abstract Domain. In NASA Formal Methods. 212-229.

[23] Shachar Itzhaky, Anindya Banerjee, Neil Immerman, Aleksandar
Nanevski, and Mooly Sagiv. 2013. Effectively-Propositional Reasoning
about Reachability in Linked Data Structures. In CAV. 756-772.

[24] Bart Jacobs, Jan Smans, Pieter Philippaerts, Frédéric Vogels, Willem
Penninckx, and Frank Piessens. 2011. VeriFast: A Powerful, Sound,
Predictable, Fast Verifier for C and Java. In NASA Formal Methods.
41-55.

[25] JDB 2018. jdb - The Java Debugger. https://docs.oracle.com/javase/8/
docs/technotes/tools/windows/jdb.html.

[26] Neil D. Jones and Steven S. Muchnick. 1982. A Flexible Approach
to Interprocedural Data Flow Analysis and Programs with Recursive
Data Structures. In POPL. 66-74.

[27] JSF 2018. JSF: The Java StarFinder Symbolic Execution Tool. https:
//github.com/star-finder/jpf-star.

[28] Sarfraz Khurshid, Corina S Pisireanu, and Willem Visser. 2003. Gen-
eralized symbolic execution for model checking and testing. In TACAS.
Springer, 553-568.

[29] Quang Loc Le, Cristian Gherghina, Shengchao Qin, and Wei-Ngan
Chin. 2014. Shape Analysis via Second-Order Bi-Abduction. In CAV.
52-68.

[30] Xavier Leroy. 2006. Formal certification of a compiler back-end or:
programming a compiler with a proof assistant. In POPL. 42-54.

[31] LLDB 2018. The LLDB Debugger. https:/lldb.llvm.org/.

[32] Stephen Magill, Aleksandar Nanevski, Edmund Clarke, and Peter
Lee. 2006. Inferring invariants in separation logic for imperative
list-processing programs. SPACE 1, 1 (2006), 5-7.

[33] Stephen Magill, Ming-Hsien Tsai, Peter Lee, and Yih-Kuen Tsay. 2008.
THOR: A Tool for Reasoning about Shape and Arithmetic. In CAV.
428-432.

[34] Stephen Magill, Ming-Hsien Tsai, Peter Lee, and Yih-Kuen Tsay. 2010.
Automatic numeric abstractions for heap-manipulating programs. In
POPL. 211-222.

[35] Juan Antonio Navarro Pérez and Andrey Rybalchenko. 2011. Separa-
tion Logic + Superposition Calculus = Heap Theorem Prover. In PLDL
556-566.

[36] Huu Hai Nguyen, Viktor Kuncak, and Wei-Ngan Chin. 2008. Runtime
Checking for Separation Logic. In VMCAL 203-217.

[37] ThanhVu Nguyen, Matthew Dwyer, and William Visser. 2017. SymlIn-
fer: Inferring Program Invariants using Symbolic States. In ASE. 804-
814.

[38] ThanhVu Nguyen, Deepak Kapur, Westley Weimer, and Stephanie
Forrest. 2014. DIG: A Dynamic Invariant Generator for Polynomial and
Array Invariants. Transactions on Software Engineering Methodology
23, 4 (2014), 30:1-30:30.

[39] ThanhVu Nguyen, Deepak Kapur, Westley Weimer, and Stephanie For-
rest. 2014. Using Dynamic Analysis to Generate Disjunctive Invariants..
In ICSE. 608-619.

[40] Peter W. O’'Hearn. 2016. CurryOn ’16 Talk: Move fast to fix more
things.

[41] Peter W. O’Hearn, John C. Reynolds, and Hongseok Yang. 2001. Local
Reasoning about Programs that Alter Data Structures. In CSL. 1-19.

[42] Saswat Padhi, Rahul Sharma, and Todd Millstein. 2016. Data-driven
Precondition Inference with Learned Features. In PLDI. 42-56.

[43] PDB 2018. pdb - The Python Debugger. https://docs.python.org/2/
library/pdb.html.

[44] Edgar Pek, Xiaokang Qiu, and P. Madhusudan. 2014. Natural Proofs
for Data Structure Manipulation in C Using Separation Logic. In PLDL.
440-451.

http://fbinfer.com/
https://www.gnu.org/software/gdb/
https://www.gnu.org/software/gdb/
https://docs.oracle.com/javase/8/docs/technotes/tools/windows/jdb.html
https://docs.oracle.com/javase/8/docs/technotes/tools/windows/jdb.html
https://github.com/star-finder/jpf-star
https://github.com/star-finder/jpf-star
https://lldb.llvm.org/
https://docs.python.org/2/library/pdb.html
https://docs.python.org/2/library/pdb.html

PLDI ’19, June 22-26, 2019, Phoenix, AZ, USA

[45] Jeff H. Perkins, Sunghun Kim, Sam Larsen, Saman Amarasinghe,
Jonathan Bachrach, Michael Carbin, Carlos Pacheco, Frank Sher-
wood, Stelios Sidiroglou, Greg Sullivan, Weng-Fai Wong, Yoav Zibin,
Michael D. Ernst, and Martin Rinard. 2009. Automatically patching
errors in deployed software. In Symposium on Operating Systems Prin-
ciples. 87-102.

[46] Ruzica Piskac, Thomas Wies, and Damien Zufferey. 2014. GRASShop-
per - Complete Heap Verification with Mixed Specifications. In TACAS.
124-139.

[47] John C. Reynolds. 2002. Separation Logic: A Logic for Shared Mutable
Data Structures. In Symposium on Logic in Computer Science. 55-74.

Ton Chanh Le, Guolong Zheng, and ThanhVu Nguyen

[48] Mooly Sagiv, Thomas Reps, and Reinhard Wilhelm. 2002. Parametric
shape analysis via 3-valued logic. TOPLAS 24, 3 (2002), 217-298.

[49] Quang-Trung Ta, Ton Chanh Le, Siau-Cheng Khoo, and Wei-Ngan
Chin. 2016. Automated Mutual Explicit Induction Proof in Separation
Logic. In FM. 659-676.

[50] Quang-Trung Ta, Ton Chanh Le, Siau-Cheng Khoo, and Wei-Ngan
Chin. 2018. Automated Lemma Synthesis in Symbolic-heap Separation
Logic. PACMPL 2, POPL (2018), 9:1-9:29.

[51] VCDryad 2018. Automated deductive verification framework. http:
//madhu.cs.illinois.edu/vcdryad/.

[52] He Zhu, Gustavo Petri, and Suresh Jagannathan. 2016. Automatically
learning shape specifications. In PLDL. ACM, 491-507.

http://madhu.cs.illinois.edu/vcdryad/
http://madhu.cs.illinois.edu/vcdryad/

	Abstract
	1 Introduction
	2 Illustration
	2.1 Heap Predicates
	2.2 Traces
	2.3 Inference

	3 Separation Logic
	4 The SLING Algorithm
	4.1 Heap Partitioning
	4.2 Inferring Atomic Heap Predicates
	4.3 Pure Inference
	4.4 Validation
	4.5 Complexity

	5 Evaluation
	5.1 Benchmark Programs
	5.2 Setup
	5.3 Results
	5.4 Uses of Inferred Invariants
	5.5 Comparing to the S2 Static Analyzer

	6 Related Work
	7 Conclusion
	References

