
Geometric Quantifier Elimination Heuristics
for Automatically Generating Octagonal

and Max-plus Invariants?

Deepak Kapur1, Zhihai Zhang2, Matthias Horbach1,
Hengjun Zhao3, Qi Lu1, and ThanhVu Nguyen1

1 Department of Computer Science, University of New Mexico,
Albuquerque, NM, USA

2 School of Mathematical Sciences, Peking University,
Beijing, China

3 Institute of Software, Chinese Academy of Sciences,
Beijing, China

Abstract. Geometric heuristics for the quantifier elimination approach
presented by Kapur (2004) are investigated to automatically derive loop
invariants expressing weakly relational numerical properties (such as
l ≤ x ≤ h or l ≤ ±x ± y ≤ h) for imperative programs. Such proper-
ties have been successfully used to analyze commercial software con-
sisting of hundreds of thousands of lines of code (using for example,
the Astrée tool based on abstract interpretation framework proposed
by Cousot and his group). The main attraction of the proposed ap-
proach is its much lower complexity in contrast to the abstract inter-
pretation approach (O(n2) in contrast to O(n4), where n is the number
of variables) with the ability to still generate invariants of comparable
strength. This approach has been generalized to consider disjunctive in-
variants of the similar form, expressed using maximum function (such as
max(x+a, y+ b, z+ c, d) ≤ max(x+ e, y+ f, z+ g, h)), thus enabling au-
tomatic generation of a subclass of disjunctive invariants for imperative
programs as well.

1 Introduction

In [23, 22], Kapur proposed an approach based on quantifier elimination for gen-
erating program invariants in general and loop invariants in particular. Depend-
ing upon the formulas of interest to serve as invariants at a program location,
parametric formulas are identified such that when those parameters are fully
instantiated, the results are the desired invariants. As an example, if a goal is to
discover linear inequalities as the invariants, then the corresponding parametric
form is a·x+b·y+c·z ≤ d, where x, y, z are program variables and a, b, c, d are pa-
rameters. Notice that the parametrized form is not a linear inequality because of

? Partially supported by NSF grants CCF-0729097 and CNS-0905222, by a fellowship
from the Postdoc Program of the German Academic Exchange Service (DAAD), and
by EXACTA and the China Scholarship Council.

presence of terms like a·x, b·y, c·z, but rather a nonlinear (quadratic) inequality.
If the goal is to find quadratic inequalities (such as ellipsoid inequalities), then
the associated parametric form is still a nonlinear inequality, albeit of degree
3. Once a parametric form for invariants of interest is identified, then Kapur’s
approach involves generating verification conditions using the parametrized for-
mulas for each distinct program path and eliminating program variables from
the verification conditions using quantifier elimination to produce constraints on
parameters. For any given parameter value satisfying the resulting constraints,
the verification conditions instantiated with these parameter values then be-
come valid, implying that the corresponding instantiation of the parametrized
invariant is indeed a program invariant.

The main contribution of the paper is the development of an efficient geomet-
ric local heuristic for a restricted version of quantifier elimination over a subset
of parametrized linear formulas so as to generate octagonal invariants and max-
plus invariants for programs. The quantifier elimination problem of interest is of
the form

∀x1, . . . , xn Φ(p1, . . . , pm, x1, . . . , xn),

where p1, . . . pm are parameters, x1, . . . , xn are program variables, and Φ is a
verification condition, a quantifier-free formula over p1, . . . , pm and x1, . . . , xn.
The objective is to generate a nontrivial quantifier-free formula over p1, . . . , pm
that implies ∀x1, . . . , xn Φ. We focus on two types of parametric formulas: (i) a
parametric formula obtained using a conjunction of atomic formulas of the form
l ≤ x, x ≤ h, l ≤ x+y, x+y ≤ h, l ≤ x−y, and x−y ≤ h, where x, y are program
variables and l, h are parameters, and (ii) a parametric formula obtained using a
limited form of disjunctions of conjunctions of formulas of the form l ≤ x, x ≤ h,
l ≤ x− y, and x− y ≤ h, which are equivalent to a pure conjunction of formulas
of the form max(x1 + a1, x2 + a2, a0) ≥ max(x1 + b1, x2 + b2, . . . , xk + bk, b0),
where ai, bj are parameters. Such invariants have been found to be very effective
in detecting bugs in commercial software for flight control and related embedded
systems for memory violation [1] and numerical errors using tools such as Astrée
[9].

Given that quantifier elimination is in general computationally a highly
expensive operation (either undecidable or doubly exponential) and further-
more, outputs generated by complete quantifier elimination algorithms are huge,
we address both of these problems by exploring a local incomplete quantifier-
elimination geometric heuristic which considers formulas with constant number
of variables (typically two variables) as well as which is geometrically based re-
sulting in manageable outputs by focusing on relevant cases. As shown later in
the paper, this quantifier elimination heuristic results in generating program in-
variants of strength and quality comparable to those obtained using the methods
based on the abstract interpretation framework as discussed in [25], but with a
much lower asymptotic complexity—O(n2) in the number of program variables
in comparison to O(n4) for algorithms based on the abstract interpretation ap-
proach.

2

A fascinating aspect of our approach is that for octagonal invariants, since the
parametric form is fixed and determined by the number of program variables, it
is possible to develop local heuristics focusing on quantifier elimination to a pair
of distinct variables. By analyzing different kinds of assignment statement, we
have developed an approach for quantifier elimination using table look-ups based
on the presence (or absence) of parameter-free atomic formulas (corresponding
to various sides of octagons) appearing in a program path. Using these tables,
it is possible to identify how these atomic formulas in a program path restrict
octagonal invariants for various kinds of assignments on program variables. Pa-
rameter constraints generated by the quantifier-elimination heuristic can also be
decomposed into subsets of constraints on at most four parameters, resulting in
very efficient algorithms for a family of invariants of different quality and even
generating the strongest possible invariants.

In our analysis, a formula over an arbitrary number of variables is decom-
posed into subformulas on a fixed number of variables. As a result, efficient
heuristics can be designed exploiting the structure of these subformulas. This
paper reports a few such heuristics we have developed; many more are still pos-
sible and are being explored.

A major advantage of the proposed approach is that it is highly parallelizable,
which is especially good for scalability, since most of its steps can be done in
parallel:

– Analysis for different program paths can be done in parallel.
– Table look-up for each of the tests to generate constraints on parameters can

be done in parallel.
– Parameter constraints can be analyzed in parallel by decomposing them into

blocks of constraints on a fixed number of variables.
– Generation of the strongest invariant after computing maximum lower bounds

and minimum upper bounds on parameters can also be derived in parallel.

The sequential bottleneck in the analysis is the derivation of implicit tests from
the tests appearing in a program path.

The paper is organized as follows: In the next subsection, we briefly review
related work on the generation of octagonal and max plus invariants. This is
followed by a high level comparison of the quantifier elimination approach and
fixed point approaches for generating program invariants, with a particular fo-
cus on the abstract interpretation approach. We discuss the strength and quality
of invariants generated by these approaches. Section 2 focuses on octagonal in-
variants. Section 3 reports our preliminary investigations for generating disjunc-
tive invariants expressed using a conjunction of max-plus constraints. Section 4
briefly discusses future work.

1.1 Related Work

Quantifier elimination approaches for static program analysis have been investi-
gated in many different ways, particularly for generating linear inequalities based

3

on Farkas’s lemma [26], using linear constraints and skeletons [15, 16], program
synthesis [14, 30, 28], termination of programs using linear and nonlinear ranking
functions [7, 32, 31], as well as analysis of hybrid systems [29, 21].

The most popular approach for automatically generating invariants is using
the abstract interpretation framework pioneered by Cousot and Cousot [8]. This
research direction has resulted in very powerful tools, Astrée and its descendants,
which have been used in finding bugs in commercial software, and a related set
of experimental freely available tools (including Interproc [20], the tool we use
in this paper for comparative purposes because it was designed for similar pro-
grams). One of the main reasons for the success of the abstract interpretation
approach on real large numerical software is a collection of efficient algorithms
designed for various operations for different abstract domains. Two Ph.D. theses
by Miné [25] and Allamigeon [1] are the closest to the results presented in this
paper. Miné’s thesis focused on weakly relational numerical abstract domains
where program invariants are specified using octagonal constraints (or a subset
of octagonal constraints). Allamigeon’s thesis considered max-plus invariants. As
pointed out by Miné, the use of linear inequalities as an abstract domain pro-
posed in [10] does not scale because of the exponential complexity of algorithms
needed to perform abstract domain operations on convex polyhedra including
conversion back and forth between their representation as a conjunction of linear
inequalities and the generator (frame) representation.

Octagonal constraints (also called unit two variable per inequality or UTVPI
constraints) have been extensively investigated. Octagonal constraints are also
interesting to study from a complexity perspective and are a good compromise
between interval constraints and linear constraints. Linear constraint analysis
over the rationals (Q) and reals (R), while of polynomial complexity, has been
found in practice to be inefficient and slow, especially when the number of vari-
ables grows [25, 9], since it must be used repeatedly in an abstract interpretation
framework. Often, we are however interested in cases when program variables
take integer values bound by computer arithmetic. If program variables are re-
stricted to take integer values (which is especially the case for expressions serving
as array indices and memory references), then octagonal constraints are among
the most expressive fragments of linear (Presburger) arithmetic over the inte-
gers with a polynomial time complexity. It is well known that extending linear
constraints to have three variables even with unit coefficients (i.e., ranging over
{−1, 0, 1}) makes checking their satisfiability over the integers NP-complete [19,
27]; similarly, restricting linear arithmetic constraints to be just over two vari-
ables, but allowing non-unit integer coefficients of the variables also leads to the
satisfiability check over the integers being NP-complete. The Floyd-Warshall
algorithm, which is typically used to analyze the difference bound matrices rep-
resentation of octagonal constraints (see [25]), must be extended for computing
integral closure if variables are over the integers; see [3], where an O(n3) algo-
rithm for computing the tight closure of octagonal constraints over the integers
is presented that exploits integrality of constraints.

4

Max-plus constraints, i.e. constraints of the form max(x1+a1, . . . , xn+an, c) ≤
max(x1+b1, . . . , xn+bn, d), have been investigated in [4, 6], and are an active area
of research in combinatorics. They were first used for program analysis by Al-
lamigeon et al. [2], who realized their value as an abstract domain that can
express certain nonconvex sets, the so-called max-plus polyhedra, without the
need for heuristics on how to manage the number of disjunctive components. Like
classical convex polyhedra, (bounded) max-plus polyhedra can be equivalently
represented by a set of constraints or by a set of extremal points. As in the clas-
sical case, the conversion between these representations is notoriously expensive.
E.g. finding extremal points, which are usually called generators, is exponential
in the number of constraints. Even a single inequation in n dimensions can give
rise to quadratically many generators. The algorithms by Allamigeon et al. work
purely on generators instead of constraints. In our quantifier-based approach,
we will also restrict our attention to max-plus polyhedra represented by sets of
generators.

1.2 On the Quality of Invariants
Generated using Quantifier Elimination

We briefly compare the quantifier elimination approach for generating inductive
invariants as proposed in [23, 22] to other approaches based on fixed point algo-
rithms, in particular the abstract interpretation framework pioneered by [8, 10,
25, 1].

An invariant at any location in a program captures a superset of the states
reached (also called reachable states) whenever program control passes through
that particular location. The strongest possible invariant at any location is thus
simply a disjunction specifying that the state at that location is one of these
reachable states. If a location is visited finitely many times, then this disjunction
is a formula as long as a single reachable state can be precisely characterized
by a formula in a first-order theory that is expressive enough (provided the set
of initial states of the program can be described in such a way). However, if a
location is visited infinitely often in the case of a nonterminating program, then
this set of infinitely many states must be specified by a finite formula in a richer
language with interpreted function symbols; this may often be an approximation
in the sense that the set of states by which such a formula is satisfied is typically a
superset of the reachable states at the location. For every program path through
the location, the effect of the statements on that path preserve the reachable set
of states at the location. Given a set S of states, a formula φ is the strongest in
a theory (such as Presburger arithmetic, Tarski’s theory of real closed fields, the
theory of polynomial equalities over an algebraically closed field, etc.) specifying
S iff there is no other formula γ not equivalent in the theory to φ such that (i)
γ =⇒ φ and (ii) γ is satisfied by every state in the set. Typically, formulas
used for specifying states are quantifier-free as quantified formulas are difficult
to analyze.

In the abstract interpretation approach, concrete states are abstracted to
abstract states using an abstraction function and abstract states are specified

5

using the elements of an abstract domain, which is a lattice. In this context, each
program variable, instead of taking a concrete value, may take an abstract value
[8]. Concrete states and abstract states in their setting are related using a Galois
connection. Examples of abstract values commonly used are the values of a vari-
able being in an interval (zonal constraints), or in addition to being an interval,
sum and difference of two different variables is also in an interval (octagonal
constraint) [25], or more complex constraints on the values of variables includ-
ing max-plus constraints [1] and linear constraints [10]; other domains have also
been explored. An invariant is expressed as an abstract element or a set thereof
and is computed by a terminating fixed point computation using a suitably de-
fined widening operator (and narrowing operators); many heuristics have been
proposed to improve the quality of the invariants computed using this approach
[11, 5].

Elements in an abstract domain typically can be represented as a conjunction
of atomic formulas over a suitable theory. For example, conjunctions of interval
constraints, octagonal constraints, and max plus constraints can all be written
in a small fragment of quantifier-free Presburger arithmetic, whereas a general
conjunction of linear constraints uses full quantifier-free Presburger arithmetic
(but without disjunction and negation).

As stated above, the quantifier elimination approach for generating invari-
ants at a program location hypothesizes invariants as formulas of a certain form,
which can be parametrized. The intuition behind this approach is that for some
parameter values, the resulting instantiated formula characterizes a superset of
reachable states at the program location. In other words, when parameters in
such a formula are fully instantiated, the resulting formula is in (a fragment
of) the language used for writing the formulas, even though the parametrized
formula may be in a richer language. In the case of octagonal constraints, a
parametrized formula is a conjunction of atomic formulas of the form l ≤ e and
e ≤ h, where l, h are parameters, and e is a variable, the difference of two vari-
ables or the sum of two variables; in this case, both the parametrized formula
as well as its instantiation are in Presburger arithmetic (a parametrized atomic
formula is expressed using at most three variables whereas a nonparametrized
atomic formula is expressed using at most two variables). However, for linear
constraints, a parametrized formula is not in the language of Presburger arith-
metic since the parametrized formula could be ax+ by + cz ≤ d, where a, b, c, d
are parameters, but its instantiations are in Presburger arithmetic.

Verification conditions corresponding to paths through the given program
location are then generated and program variables are eliminated from the veri-
fication conditions, giving rise to constraints on parameters. If there is an invari-
ant of the hypothesized shape associated with the program location, then the
quantifier elimination approach would find such an invariant assuming that the
method for quantifier elimination is complete. Furthermore, if all the solutions
of constraints on parameters resulting from a complete quantifier elimination
method can be finitely described, then this approach produces the strongest in-
variant of such shape, implying that it is stronger than the invariant generated

6

by any other approach including the abstract interpretation framework. Even
if the quantifier elimination method is incomplete (but sound), then its result
would lead to constraints on parameters such that all parameter values that
satisfy these constraints on parameters, will result in an invariant. In this sense,
the quantifier elimination approach is the most general method for computing
invariants of programs.

2 Octagonal Invariants

2.1 Overview

In this section, we propose a method based on quantifier elimination for au-
tomatically generating program invariants which are conjunctions of octagonal
constraints over the integers as atomic formulas. Such an atomic formula is a
lower bound on a program variable x, an upper bound on a program variable
x, a lower bound on x + y, where x, y are program variables, an upper bound
on x + y, and similarly, a lower bound on x − y or an upper bound on x − y.
The reader would notice that a negation of any of the above atomic formulas
over the integers can also be easily expressed. An expression x, x + y or x − y
need not have a lower bound or an upper bound; to allow such possibilities,
it is convenient to extend Z, the domain of integers, to include both −∞ and
+∞ with the usual semantics (see the Appendix about how various arithmetic
operations and ordering relations are extended to consider −∞ and +∞). This
also ensures that a trivial invariant will always be generated by the proposed
method, in which these expressions have −∞ as the lower bound and +∞ as
the upper bound, much like the trivial invariant true.

Let us assume that invariants (which we will have to compute) are associ-
ated with sufficiently many program locations (usually it suffices to associate an
invariant with every loop and the entry and exit of every procedure/method).
Verification conditions are then generated for every possible program path among
pairs of such invariants. In the case of nested loops, invariants must be associated
with every loop.

Assuming n program variables x1, · · ·xn appearing along a program path,
an invariant I(X) expressed as a conjunction of octagonal constraints is of the
form:

I(X) = ∧1≤i<j≤nocta(xi, xj),

where X is {x1, . . . , xn}, octa(xi, xj) is a conjunction of atomic formulas dis-
cussed above and expressed using program variables xi, xj , i 6= j. A typical ver-
ification condition Φ(X) corresponding to a program path in a loop expressed
using such invariants is:

(I(X) ∧ T (X)) =⇒ I(X ′),

where X ′ contains the new values of the variables in X after all the assignments
along the path, and T (X) is a conjunction of all the loop tests and branch

7

conditions along the branch. Without any loss of generality we can and will
assume that T (X) is a conjunction of atomic formulas, as otherwise the verifica-
tion condition can be split into a conjunction of several verification conditions,
with each being considered separately. As an example, if a loop condition is
T (X) = T 1(X) ∨ T 2(X), then the above subformula can be split into:

(I(X) ∧ T 1(X)) =⇒ I(X ′) ∧
(I(X) ∧ T 2(X)) =⇒ I(X ′) .

It is also assumed in the analysis below that all branches indeed partici-
pate in determining the program behavior, i.e. there is no dead branch which
is never executed for the initial states under consideration. Considering dead
branches can unnecessarily weaken the invariants generated using the quantifier
elimination approach by imposing unnecessary constraints on parameters.4

Assume a different parametrized loop invariant at the entry of every loop (and
every function and procedure, if any, in a program). Given the fixed structure
of octagonal constraints, this is relatively easy. The formula octa(xi, xj) can be
fully parametrized with 8 parameters, one parameter each for lower bound and
upper bound for each of the two variables xi, xj , for the sum expression xi + xj
and the difference expression xi − xj . It is of the following form:

octa(xi, xj) , (l1 ≤ xi−xj ≤ u1∧l2 ≤ xi+xj ≤ u2∧l3 ≤ xi ≤ u3∧l4 ≤ xj ≤ u4).5

So there are n·(n−1)
2 pairs of variables, and there are total 2n · (n − 1) + 2n =

2n2 parameters for each loop invariant assuming all the variables are needed to
specify the strongest possible loop invariant. We also have the constraints that
li ≤ ui, i = 1, 2, 3, 4.

For generating invariants, all program paths must be considered. The initial
state of a program, expressed by a precondition, as well as other initialization
assignments to program variables, may impose additional constraints on param-
eters.

To ensure that the verification condition generated from any program path
also has the same types of atomic formulas, it is assumed that tests (for a loop as

4 This is a weakness of the quantifier elimination approaches in contrast to other
approaches where dead code gets automatically omitted in the analysis. Incomplete
but fast dead code detectors are however a standard component of the static analysis
performed in state of the art integrated program development environment including
ECLIPSE (JAVA/C++) and Microsoft Visual Studio, and can be switched on in the
GNU Compiler Collection.

In our current implementation of the quantifier elimination approach, many dead
branches are detected during the generation of the verification conditions, which
tend to have trivially false antecedents for inexecutable paths.

5 As the reader would have noticed, the closure of these constraints imposes a rela-
tionship among various parameters; for instance, lower and upper bounds on xi, xj
can be deduced from the lower and upper bounds on xi − xj and xi + xj . However,
the most generic octagon still requires 8 parameters.

8

well as in a conditional statement) are of the same form. And assignment state-
ments are of the form x := x+A, x := −x+A, and x := A, where A is a constant.
Otherwise, tests and assignments must be approximated:

– An unsupported assignment is approximated to take an unknown value, i.e.
for the variable x being assigned and any other variable y: −∞ ≤ x ≤ +∞,
−∞ ≤ x− y ≤ +∞ and −∞ ≤ x+ y ≤ +∞.

– An unsupported test of a loop can be approximated to be both true and
false, i.e. the loop can be arbitrarily continued or left after each iteration.

– An unsupported test of a conditional can also be approximated to be both
true and false, i.e. both branches can always be executed.

2.2 Program Analysis using Octagonal Invariants

We now present our method for generating program invariants with octagonal
constraints.

0. Associate a parametrized octagonal invariant with every loop entry as well
as with the entry and exit of every function/procedure.

1. Within a function/procedure, for every program path, generate a verification
condition from program invariants at every loop entry. This can be done by
standard methods like the computation of weakest preconditions for each
path using Hoare logic [18].

2. If the resulting verification condition cannot be expressed such that all
atomic formulas are octagonal constraints and all assignments are of one
of the supported forms, approximate them as detailed above (Section 2.1).
This approximation is standard in program analysis. In this paper, we as-
sume for simplicity that we do not have to perform any approximations for
tests or assignments.

3. Eliminate the quantifiers from each verification condition. This results in
a set of constraints on the parameters of the involved invariants. To keep
the quantifier elimination procedure fast (quadratic in the number of pro-
gram variables), the verification condition is approximated using a geometric
heuristic (Section 2.5).

4. Take the union of all the constraint sets thus generated. Every parameter
value that satisfies the constraints leads to an invariant. To accommodate
program variables having no lower or upper bounds, parameters are allowed
to have −∞ and +∞ as possible values. Because of this, an octagonal invari-
ant is always generated, with the trivial invariant being the one where −∞
and +∞ serve as lower and upper bounds for every arithmetic expression
(x, x+ y, x− y).

The remainder of this section is mainly devoted to the development of an efficient
way to perform the quantifier elimination in Step 3: In Subsection 2.3, we will
discuss ways to make the tests appearing in the verification condition leaner or
richer, Subsections 2.4 and 2.5 contain an explanation of the rationale behind

9

our method, and in Sections 2.6–2.8, we will show how to perform the actual
quantifier elimination efficiently using a series of simple table look-ups.

Our approach does not involve any direct fixed point computation. The anal-
ysis is done only once for every program branch, in contrast to the abstract
interpretation approach which requires the analysis to be done multiple times,
depending upon the nature of the widening operator used for a particular ab-
stract domain to ensure the termination of the fixed point computation. Fur-
thermore, much like traditional Floyd-Hoare analysis, derivation of invariants is
done without making any assumption about the termination of programs, which
is handled separately. As illustrated below, our approach can derive invariants
of nonterminating programs as well and can thus be effective for nonterminating
reactive programs as well.

2.3 Trivially Redundant and Implicit Conditions

The formula T (X), which is a conjunction of test conditions along a program
path, can contain trivially redundant constraints and it can imply additional
constraints (including their unsatisfiability). By trivially redundant constraints,
we mean multiple constraints on the lower bound (upper bound) of the same
expression (such as 5 ≤ x − y as well as 4 ≤ x − y) out of which the respective
greatest lower bound (the respective least upper bound) only needs to be re-
tained; such trivially redundant constraints can be removed in O(m), where m
is the number of such constraints. It can be shown easily that if any trivially re-
dundant constraints were retained and subsequently used to generate parameter
constraints from the tables discussed in the later subsections, such parameter
constraints will also be trivially redundant, without affecting the loop invari-
ants generated. Henceforth, we will always assume that trivially redundant con-
straints are removed, such that e.g. a set of octagonal constraints between two
variables contains at most 8 constraints.

Since our method for quantifier elimination is driven by parameter-free con-
straints in a verification condition, it is useful to derive implicit constraints from
T (X). Checking for satisfiability as well as deriving additional constraints can
require in the worst case O(n3) steps [3] due to the use of the cubic Floyd-
Warshall normalization algorithm, where n is the number of program variables
appearing in these constraints. As an illustration,

x+ y ≥ 1, z − y ≥ 2, z ≤ 1

gives −y ≥ 1 from z − y ≥ 2 ∧ z ≤ 1, which with x+ y ≥ 1 results in x ≥ 2.
By localizing the derivation of additional constraints by considering each

pair of variables, constant time is needed; this implies that for O(n2) pairs of
variables, the derivation of implicit constraints requires O(n2) steps. This pre-
processing is performed for each pair of variables in random order, since when
performed sequentially, the order can affect the output of the results. In the
above illustration, picking y, z led to an additional constraint on y which with
interaction with constraints on x, y led to an additional constraint on x. If in-
stead the pair x, y had been picked first, then the additional implicit constraint

10

on x would have been missed by this localized closure. Heuristics can be de-
veloped to come up with a good order such that the localized closure produces
results which are a good approximation of the global closure. As will be shown
below, such localized closure of constraints will keep the complexity of the loop
invariant generation method quadratic in the number of program variables.

2.4 Localized Quantifier Elimination

Our goal is to efficiently generate sufficient conditions on parameters so that
the verification condition Φ(X) is satisfied by all parameter values satisfying
these conditions (the soundness condition). Of course, it is most desirable to
generate as strong an approximation as possible to the quantifier-free formula
on parameters equivalent to ∀X Φ(X). Note that Φ is a conjunction of clauses
of the form I∧ Let φi,j be the subformula of Φ expressed only using program
variables xi, xj . E.g. if

Φ = (x1 ≤ u1 ∧ x2 ≤ u2 ∧ x2 ≤ u3) =⇒ (x1 ≤ 1 + u1 ∧ x2 ≤ −l2 ∧ x2 ≤ u3) ,

then
φ1,2 = (x1 ≤ u1 ∧ x2 ≤ u2) =⇒ (x1 ≤ 1 + u1 ∧ x2 ≤ −l2) .

Given the structure of Φ, it is easy to see that

[∧1≤i 6=j≤n(∀xi, xj φi,j)] ≡ [∀X Φ(X)] .

The following theorem enables us to factor quantifier elimination of ∀X Φ(X)
by considering subformulas ∀xi, xj φi,j corresponding to a single pair of distinct
variables in Φ, generating sufficient conditions on parameters for the subformula
(soundness requirement on quantifier elimination heuristic), and then doing a
conjunction of such conditions on parameters for every subformula on every
possible pairs of variables. The result is then a sufficient condition for the veri-
fication condition ∀X Φ(X).

Theorem 1. Let pci,j be a quantifier-free formula on parameters in φi,j such
that for every possible parameter assignment σ, if σ satisfies pci,j, then σ satisfies
∀xi, xj φi,j. Then any parameter assignment that satisfies ∧1≤i<j≤npci,j also
satisfies ∀X Φ(X).

Proof. The proof follows from ∧1≤i<j≤n(∀xi, xj φ(xi, xj)) being equivalent to
∀X Φ(X). ut

The above theorem enables localizing quantifier elimination from a formula of
arbitrary size to a formula of fixed size: the size of ∀xi, xj φ(xi, xj) is determined
by the parameter-free part, which is a conjunction of tests along a program path;
other than this subformula, the hypothesis is a conjunction of 8 atomic formulas
with parameters and the conclusion is also a conjunction of 8 atomic formulas
with parameters. For such a formula, quantifier elimination can be performed in
constant time. In contrast, the worst case complexity of a complete quantifier

11

elimination for linear constraints is exponential in the number of quantifiers
alternations and doubly exponential in the number of quantified variables [24].
Below, we will focus on the subformula φi,j in the verification condition Φ(X) and
discuss quantifier elimination of xi, xj from φi,j . To make the presentation free
of subscripts, we will replace xi, xj by x, y, and henceforth call this verification
condition φ(x, y).

2.5 Geometric View of Quantifier Elimination

The subformula φ(x, y) is of the form

(octa(x, y) ∧ T (x, y))⇒ octa(x′, y′) ,

where x′ and y′ are the values of x and y after all the assignments on a program
path have been executed and T (x, y) is the conjunction of all the atomic formulas
obtained by the localized closure of parameter-free octagonal constraints on x, y,
resulting from the loop tests and branch conditions in the program path (after
being appropriately modified due to assignment statements between any two
tests).

As discussed above, the parametrized invariant octa(x, y) specifies an octagon
with 8 sides corresponding to each of the atomic constraints in octa(x, y). In
order to ensure that the verification condition φ(x, y) consists only of octagonal
constraints, there can only be four different possibilities about the cumulative
effect of all assignments of x, y along a program path (the fourth possibility is
covered by the case 3 below by switching x and y).

Possibility 1 x := −x+A and y := −y+B,
Possibility 2 x := x+A and y := y+B,
Possibility 3 x := −x+A and y := y+B,

where A,B are constants.6 Each of these possibilities gives rise to a transformed
octagon I(x′, y′); both the original (white) octagon I(x, y) and the transformed
(shaded) octagon I(x′, y′) are depicted in Figures 1–3 on the following pages,
corresponding to the three possibilities. The subformula φ(x, y) is:(
l1 ≤ x− y ≤ u1 ∧ l2 ≤ x+ y ≤ u2 ∧ l3 ≤ x ≤ u3 ∧ l4 ≤ y ≤ u4

)
∧ T (x, y)

=⇒
(
l1 ≤ x′ − y′ ≤ u1 ∧ l2 ≤ x′ + y′ ≤ u2 ∧ l3 ≤ x′ ≤ u3 ∧ l4 ≤ y′ ≤ u4

)
,

with l1, u1, l2, u2, l3, u3, l4, u4 as parameters. The goal is to eliminate program
variables x, y from φ(x, y) and efficiently generate the strongest possible approx-
imation of an equivalent quantifier-free formula on the parameters l1, l2, l3, l4 and
u1, u2, u3, u4 to ∀x, y φ(x, y). The main requirement on the result is that it is a
sound underapproximation in the sense that we may miss some valid invariants,
but the method does not yield any formulas that are invalid invariants.

6 Constant assignments of the form x := A or y := B are handled similarly. Their
discussion is omitted due to lack of space.

12

It should be first observed that the hypothesis in φ(x, y) is a conjunction of
a parametrized octagon octa(x, y) and a (partial) concrete octagon T (x, y); thus
it corresponds to the intersection of these octagons. The conclusion octa(x′, y′)
is also a parametrized octagon; it is a displaced version of the octagon in the
hypothesis. Constraints on parameters l1, l2, l3, l4, u1, u2, u3, u4 that ensure that
the intersection octagon octa(x, y) ∧ T (x, y) being contained in octa(x′, y′) is a
good approximation of a quantifier-free formula equivalent to ∀x, y φ(x, y).

In each subsection corresponding to one of the possibilities, using local geo-
metric analysis, we consider one by one, every side of the concrete octagon (and
hence every possible lower bound and upper bound on x − y, x + y, x, y in T)
to see how it rules out the portion of the parametrized octagon octa(x, y) not
included in octa(x′, y′). This is ensured in two parts. Conditions on A,B must
be identified for each of the above three possibilities such that there is an overlap
between the transformed octagon and the original octagon; often, this overlap
can be ensured by making a few of the sides to be at −∞ (or +∞) (the case of
when all sides have to be unbounded, leads to a trivial invariant, similar to the
invariant true for any loop).

Depending upon the presence or absence of a side in the concrete octagon
defined by T (i.e., a bound in T), parameter values are constrained by A or B.
As an example, in Figure 1, if there is no upper bound constraint on x− y in T ,
then u1 ≤ (−l1 + ∆1) (where ∆1 = A − B) ensures that the x − y side of the
original octagon is contained in the corresponding inverted side in the displaced
octagon; we can also see this from (x− y ≤ u1)⇒ (l1 ≤ −x+ y +∆1) which is
equivalent to (x − y ≤ u1) ⇒ (x − y ≤ −l1 + ∆1). In the presence of an upper
bound constraint of the form x − y ≤ a in T , both a ≤ u1 and a ≤ (−l1 + ∆1)
can be used to prune the original octagon.

These constraints on parameter values are derived below once and for all,
and a table is constructed corresponding to each of the above three possibilities
(see tables in Figures 1, 2, 3). For each possible bound, there is a table entry
depending upon whether that bound is present or absent in T .7 To generate a
quantifier-free formula pc for the above verification condition φ(x, y), it suffices
to take a conjunction of all table entries corresponding to the absence or presence
of the bounds for x, y, x− y, and x+ y in T , where each table entry specifies a
constraint on a parameter.

For example, when the signs of both variables are reversed in an assignment
x := −x+A, y := −y+B (Figure 1) and a constraint x ≤ 5 is present, the con-
straint e ≤ A − l3 is generated. When the signs of both variables are reversed
in an assignment x := x+A, y := y+B (Figure 2) and no constraint of the form
x ≤ e is present, either the constraint u3 = +∞ is generated (if A > 0) or no
constraint is generated (if A 6> 0).

Below we show the derivation for the entries of the table in Figure 1. The
tables in Figures 2 and 3 can be constructed analogously. For possibility 1, the
assignment is x := −x+A, y := −y+B; for possibility 2, x := x+A, y := y+B; for
possibility 3, x := −x+A, y := y+B. As should be evident from the table entries,

7 This is why implicit constraints from T become relevant.

13

l1 ≤ x − y

x − y ≤ u1

x − y ≤ a

−u1 +∆1 ≤ x − y

x − y ≤ −l1 +∆1

constraint present absent

x− y ≤ a a ≤ ∆1 − l1 u1 ≤ ∆1 − l1

x− y ≥ b ∆1 − u1 ≤ b ∆1 − u1 ≤ l1

x+ y ≤ c c ≤ ∆2 − l2 u2 ≤ ∆2 − l2

x+ y ≥ d ∆2 − u2 ≤ d ∆2 − u2 ≤ l2

x ≤ e e ≤ A− l3 u3 ≤ A− l3

x ≥ f A− u3 ≤ f A− u3 ≤ l3

y ≤ g g ≤ B − l4 u4 ≤ B − l4

y ≥ h B − u4 ≤ h B − u4 ≤ l4

Fig. 1. Signs of x and y are reversed: Constraints on Parameters

given two constraints on an expression (x, x + y, x − y) such that one of them
is trivially redundant (e.g., x− y ≤ 4 and x− y ≤ 10), the corresponding entry
in a table to the trivially redundant constraint is also redundant.

2.6 Reversal of The Signs of Both Variables

The verification condition for this case is:

(I(x, y) ∧ T (x, y))⇒ I(−x+A,−y +B),

which is(
l1 ≤ x− y ≤ u1 ∧ l2 ≤ x+ y ≤ u2
∧ l3 ≤ x ≤ u3 ∧ l4 ≤ y ≤ u4

)
∧ T (x, y)

⇒
(
∆1 − u1 ≤ x− y ≤ ∆1 − l1 ∧∆2 − u2 ≤ x+ y ≤ ∆2 − l2

∧A− u3 ≤ x ≤ A− l3 ∧B − u4 ≤ y ≤ B − l4

)
,

where ∆1 = A−B and ∆2 = A+B.
For x − y, the original octagon has l1 and u1 as lower and upper bound,

respectively, whereas the transformed octagon has −u1 + ∆1 and −l1 + ∆1 as
the lower and upper bounds. In the absence of any bounds on x − y in T ,
u1 ≤ ∆1 − l1 and ∆1 − u1 ≤ l1 have to hold for the transformed octagon to
include the original octagonal.

A concrete upper bound a on x− y in T however changes the constraint on
the parameter l1: For the transformed octagon to include the original octagonal,
∆1 − l1 has to be greater than or equal to one of the upper bounds u1 and a
of the original, corresponding to a constraint a ≤ u1 ∨ a ≤ ∆1 − l1. Using such
disjunctive constraints would directly lead to a combinatorial explosion of the
analysis. Instead, we decided to only admit a ≤ ∆1− l1 to the table, a safe over-
approximation which reflects that in practice, tests the programmer specifies are
actually relevant to the semantics of the program. Similarly, a concrete lower
bound b on x− y in T changes the constraint for u1 to ∆1 − u1 ≤ b.

A similar analysis can be done for x+ y: the hypothesis has l2 ≤ x+ y ≤ u2
and the conclusion includes: ∆2 − u2 ≤ x + y ≤ ∆2 − l2. In the absence of

14

any bound on x + y in T (x, y), the parameter constraints ∆2 − u2 ≤ l2 and
u2 ≤ ∆2− l2 will ensure that the corresponding side of the transformed octagon
includes that of the original octagon. If T contains a concrete upper bound c on
x + y, then c ≤ ∆2 − l2. If T has a concrete lower bound d, then ∆2 − u2 ≤ d
ensures that the transformed octagon includes the original octagon.

We will omit the analysis leading to entries corresponding to the presence
(or absence) of concrete lower and upper bounds on program variables x, y, as it
is essentially the same. The above analysis is presented in the table in Figure 1.
Depending upon a program and cases, looking up the table generates constraints
on parameters in constant time.

The following lemma states that the above quantifier elimination method is
sound.

Lemma 2. Given a test T in the subformula φ(x, y) in the verification condi-
tion, let pc be the conjunction of the parameter constraints corresponding to the
presence (or absence) of each type of concrete constraint in T . For every as-
signment of parameter values satisfying pc, substitution of these values for the
parameters makes ∀x, y φ(x, y) valid.

Proof. Follows directly from the above computations. ut

It thus follows:

Theorem 3. Any assignment of parameter values satisfying pc in the above
lemma generates octa(x, y) as the subformula on program variables x, y serving
as the invariant for the associated program path.

We illustrate how the above table can be used to generate invariants for a
program.

Example 4. Consider the following program:

−10 −5 0 5 10

5
x := 2 ; y := 3 ;
while (x+y ≥ 0) do

i f (y ≥ 2) then
y := −y+4; x := −x+3;

else
x := −x−3; y := −y+5;

The actual state space for this program is depicted on the right. There are two
branches in the loop body. For the first branch, the verification condition is:(

l1 ≤ x− y ≤ u1 ∧ l2 ≤ x+ y ≤ u2 ∧ l3 ≤ x ≤ u3 ∧ l4 ≤ y ≤ u4
)
∧ T1(x, y)

⇒
(
−1− u1 ≤ x− y ≤ −1− l1 ∧ 7− u2 ≤ x+ y ≤ 7− l2

∧ 3− u3 ≤ x ≤ 3− l3 ∧ 4− u4 ≤ y ≤ 4− l4

)
,

where A = 3, B = 4, ∆1 = −1, ∆2 = 7, and T1(x, y) = x + y ≥ 0 ∧ y ≥ 2. We
approximate this verification condition by separating the components containing

15

common parameters:

((l1 ≤ x− y ≤ u1) ∧ (x+ y ≥ 0 ∧ y ≥ 2)) =⇒ (−1− u1 ≤ x− y ≤ −1− l1)

((l2 ≤ x+ y ≤ u2) ∧ (x+ y ≥ 0 ∧ y ≥ 2)) =⇒ (7− u2 ≤ x+ y ≤ 7− l2)

((l3 ≤ x ≤ u3) ∧ (x+ y ≥ 0 ∧ y ≥ 2)) =⇒ (3− u3 ≤ x ≤ 3− l3)

((l4 ≤ y ≤ u4) ∧ (x+ y ≥ 0 ∧ y ≥ 2)) =⇒ (4− u4 ≤ y ≤ 4− l4)

The following parameter constraints are generated for branch 1:

1. Given no concrete lower or upper bounds on x − y in T1(x, y), the table in
Figure 1 generates the parameter constraints u1 ≤ −1− l1 and −1−u1 ≤ l1.

2. Since x+ y ≥ 0 in T1(x, y), the table entry corresponding to it is 7−u2 ≤ 0.
Since there is no concrete upper bound on x+ y specified in T1, there is an
additional constraint: u2 ≤ 7− l2.

3. Similarly, absence of concrete upper or lower bounds on x in T1(x, y) gives
l3 + u3 = 3.

4. For the concrete lower bound y ≥ 2 and absence of any concrete upper bound
on y in T1(x, y) the table entries are 4− u4 ≤ 2 and u4 ≤ 4− l4.

Similarly, for the second branch, the verification condition is:(
l1 ≤ x− y ≤ u1 ∧ l2 ≤ x+ y ≤ u2 ∧ l3 ≤ x ≤ u3 ∧ l4 ≤ y ≤ u4

)
∧ T2(x, y)

⇒
(
−u1 − 8 ≤ x− y ≤ −l1 − 8 ∧ −u2 + 2 ≤ x+ y ≤ −l2 + 2
∧ −u3 − 3 ≤ x ≤ −l3 − 3 ∧ −u4 + 5 ≤ y ≤ −l4 + 5

)
,

Here ∆1 = −8 and ∆2 = 2. The tests along the branch are (y + x) ≥ 0 ∧ y ≤ 1.
Their closure is

T2(x, y) = x+ y ≥ 0 ∧ y ≤ 1 ∧ x ≥ −1 ∧ x− y ≥ −2 ,

because x+ y ≥ 0 ∧ y ≤ 1 =⇒ x ≥ −1 ∧ x− y ≥ −2. The following parameter
constraints are generated for branch 2:

1. The only concrete constraint on x−y ≥ −2 in T2(x, y) generates the param-
eter constraints −8− u1 ≤ −2 and u1 ≤ −8− l1.

2. Similarly, the only constraint on x+y ≥ 0 in T2(x, y) produces the parameter
constraints 2− u2 ≤ 0 and u2 ≤ 2− l2.

3. Similarly, x ≥ −1 in T2(x, y) generates −3− u3 ≤ −1 ∧ u3 ≤ −3− l3.
4. Finally, the constraint y ≤ 1 in T2(x, y) generates the parameter constraints
−u4 + 5 ≤ l4 and 1 ≤ −l4 + 5.

At the initial entry of the loop, x = 2, y = 3, which generates additional
constraints on the parameters, like l3 ≤ 2 ≤ u3. Using these and the constraints
computed from the two branches, the following parameter constraints are gen-
erated (after throwing away trivially redundant constraints on parameters):

l1 ≤ −1 ∧ u1 ≥ −1 ∧ l1 + u1 ≥ −1 ∧ l1 + u1 ≤ −8

∧ l2 ≤ 5 ∧ u2 ≥ 7 ∧ l2 + u2 ≤ 2

∧ l3 ≤ 2 ∧ u3 ≥ 2 ∧ l3 + u3 = 3 ∧ l3 + u3 ≤ −3

∧ l4 ≤ 3 ∧ u4 ≥ 3 ∧ l4 + u4 ≤ 4 ∧ l4 + u4 ≥ 5.

16

Any values of li, uis that satisfy the above constraints result in an invariant for
the loop. However, our goal is to generate the strongest possible invariant.

It is easy to see that the above constraints can be decomposed into disjoint
subsets of constraints: (i) constraints on l1, u1, (ii) constraints on l2, u2, (iii)
constraints on l3, u3, and finally, (iv) constraints on l4, u4, implying that each
disjoint subset can be analyzed by itself. This is so because the table entries
only relate parameters li, ui, 1 ≤ i ≤ 4. This structure of parameter constraints
is exploited later to check for satisfiability of parameter constraints to generate
invariants including the strongest possible invariant.

Consider all the inequalities about l1 and u1, as an illustration:

l1 ≤ −1 ∧ u1 ≥ −1 ∧ l1 + u1 = −1 ∧ l1 + u1 ≤ −8.

As the reader would notice there are no integers that satisfy the above con-
straints, since −1 > −8. But recall that we extended numbers to include −∞
and +∞ to account for no lower bounds and no upper bounds, and that both
x(+∞)+(−∞) ≤ a and (+∞)+(−∞) ≥ a hold for every integer a. Taking those
observations into account, we find that l1 = −∞ and u1 = +∞ is a solution of
this system. Similarly, l3 = l4 = −∞ and u3 = u4 = +∞ is obtained.

Finally, all the inequalities relating to l2 and u2 are as follows

l2 ≤ 5 ∧ u2 ≥ 7 ∧ l2 + u2 ≤ 2.

Since we want to get as strong an invariant as possible, l2 should be as large as
possible and u2 should be as small as possible. Hence, l2 = −5 ∧ u2 = 7, giving
us the invariant

−5 ≤ x+ y ≤ 7.8

−10 −5 0 5 10

5

The reader should notice that we did not make use of the constraints x ≥
−1 ∧ x− y ≥ −2 obtained by closing the path constraints. So for this example,
computing the closure did not change the constraints on parameters.

2.7 The Signs of Both Variables Remain Invariant

An analysis similar to the one discussed in the previous subsection is also done
for the case when the effect of assignments on a pair of variables is of the form
x := x+A and y := y+B. The verification condition φ(x, y) for this case is:(

l1 ≤ x− y ≤ u1 ∧ l2 ≤ x+ y ≤ u2 ∧ l3 ≤ x ≤ u3 ∧ l4 ≤ y ≤ u4
)
∧ T (x, y)

⇒
(
l1 −∆1 ≤ x− y ≤ u1 −∆1 ∧ l2 −∆2 ≤ x+ y ≤ u2 −∆2

∧ l3 −A ≤ x ≤ u3 −A ∧ l4 −B ≤ y ≤ u4 −B

)
,

8 The Interproc tool produces the same invariant.

17

l2 ≤ x + y

x + y ≤ u2
d ≤ x + y

l2 −∆2 ≤ x + y

x + y ≤ u2 −∆2

constraint present absent
side

condition

x− y ≤ a u1 ≥ a+∆1 u1 = +∞ ∆1 > 0

x− y ≥ b l1 ≤ b+∆1 l1 = −∞ ∆1 < 0

x+ y ≤ c u2 ≥ c+∆2 u2 = +∞ ∆2 > 0

x+ y ≥ d l2 ≤ d+∆2 l2 = −∞ ∆2 < 0

x ≤ e u3 ≥ e+ A u3 = +∞ A > 0

x ≥ f l3 ≤ f + A l3 = −∞ A < 0

y ≤ g u4 ≥ g + B u4 = +∞ B > 0

y ≥ h l4 ≤ h+ B l4 = −∞ B < 0

Fig. 2. Signs of x and y do not change: Constraints on Parameters

where ∆1 = A − B and ∆2 = A + B. Figure 2 contains the transformed oc-
tagon (shaded) and the original octagon (white) corresponding to the octagonal
invariant, and along with concrete lower and upper bounds on x + y possibly
appearing in T .

There are two main differences between this table and the previous table.
Firstly, each table entry imposes constraints on a single parameter corresponding
to an octagonal side. Secondly, for some sides of octagons, the original octagon
does not have to be pruned. For instance, in this case when ∆1 ≤ 0, an upper
bound on x− y does not make any difference; so there is no corresponding entry
in the table.

We would like to point out similarities with the abstract interpretation ap-
proach, particularly how the widening operator is implicit in the quantifier elim-
ination heuristic. Consider an entry in the table when A > 0. The condition
A > 0 implies that if the path is executed several times, then x keeps increasing
arbitrarily. In the absence of any upper bound on x in a test in the path, the
value of x has no upper bound and u3 has to be +∞, similar to the widening
operator of abstract interpretation. Similarly, if ∆1 < 0, then along that path,
the value of x − y keeps decreasing indefinitely unless again if there is a lower
bound imposed by a test in the program path; the table entries correspond to
both of these situations. We again illustrate the use of the above table to analyze
the program below.

Example 5. Consider the following program:

0 5 10

5
x := 10 ; y := 0 ;
while (x−y ≥ 3) do

i f (x ≥ 5) then
x := x−1;

else
y := y+1;

The state space for this program is depicted on the right. For initial values
and the execution of the loop body, the following verification conditions are
generated:

18

– Initial values: l1 ≤ 10 ≤ u1 ∧ l2 ≤ 10 ≤ u2 ∧ l3 ≤ 10 ≤ u3 ∧ l4 ≤ 0 ≤ u4.

– Branch 1:(
l1 ≤ x− y ≤ u1 ∧ l2 ≤ x+ y ≤ u2 ∧ l3 ≤ x ≤ u3 ∧ l4 ≤ y ≤ u4

)
∧ T1(x, y)

⇒
(
l1 + 1 ≤ x− y ≤ u1 + 1 ∧ l2 + 1 ≤ x+ y ≤ u2 + 1

∧ l3 + 1 ≤ x ≤ u3 + 1 ∧ l4 ≤ y ≤ u4

)
,

where ∆1 = −1, ∆2 = −1 and T1(x, y) = x− y ≥ 3 ∧ x ≥ 5.

– Branch 2:(
l1 ≤ x− y ≤ u1 ∧ l2 ≤ x+ y ≤ u2 ∧ l3 ≤ x ≤ u3 ∧ l4 ≤ y ≤ u4

)
∧ T2(x, y)

⇒
(
l1 + 1 ≤ x− y ≤ u1 + 1 ∧ l2 − 1 ≤ x+ y ≤ u2 − 1

∧ l3 ≤ x ≤ u3 ∧ l4 − 1 ≤ y ≤ u4 − 1

)
,

where ∆1 = −1, ∆2 = 1 and T2(x, y) = x−y ≥ 3∧x ≤ 4∧y ≤ 1∧x+y ≤ 5.9

By combining the information from the initial condition with the constraints
generated by the table in Figure 2, we get the following constraints on the
parameters:

l1 ≤ 2 ∧ u1 ≥ 10 ∧ l2 = −∞∧ u2 ≥ 10 ∧ l3 ≤ 4 ∧ u3 ≥ 10 ∧ l4 ≤ 0 ∧ u4 ≥ 2 .

To generate the strongest possible invariant, the lis should be as large as possible,
and uis should be as small as possible. The parameter values l1 = 2, u1 = 10,
l2 = −∞, u2 = 10, l3 = 4, u3 = 10, l4 = 0 and u4 = 2 satisfy these requirements,
giving the following invariant:10

2 ≤ x− y ≤ 10 ∧ x+ y ≤ 10 ∧ 4 ≤ x ≤ 10 ∧ 0 ≤ y ≤ 2 .

As the reader would notice, the above formula is not closed: we can easily obtain
a lower bound of 4 on x + y from lower bounds of x and y. This is despite the
fact that parameter constraints above are closed. This suggests that even though
the invariant thus generated is the strongest, its representation is not closed.

0 5 10

5

Note that computing the closure of the test conditions in the second branch
strengthens the invariant generated using the proposed method. If the closure
had not been computed, the implicit constraint y ≤ 1 would not then gener-
ate the parameter constraint u4 ≥ 2. This example illustrates that computing
the closure of test conditions (even locally) can help in generating a stronger
invariant.

19

l2 ≤ x + y

x + y ≤ u2

x − y ≤ a
∆2 − u2 ≤ x − y

x − y ≤ ∆2 − l2

constraint present absent
side

condition

x− y ≤ a a ≤ ∆2 − l2 u1 ≤ ∆2 − l2 –

x− y ≥ b ∆2 − u2 ≤ b ∆2 − u2 ≤ l1 –

x+ y ≤ c c ≤ ∆1 − l1 u2 ≤ ∆1 − l1 –

x+ y ≥ d ∆1 − u1 ≤ d ∆1 − u1 ≤ l2 –

x ≤ e e ≤ A− l3 u3 ≤ A− l3 –

x ≥ f A− u3 ≤ f A− u3 ≤ l3 –

y ≤ g u4 ≥ g + B u4 = +∞ B > 0

y ≥ h l4 ≤ h+ B l4 = −∞ B < 0

Fig. 3. Sign of only x is reversed in assignment: Constraints on Parameters.

2.8 The Sign of Exactly One Variable is Reversed

As in the previous two subsections, a similar analysis can be done to investigate
the effect of assignments of the form x := −x+A and y := y+B, where the sign of
exactly one variable changes. The parametric verification condition in this case
is: (

l1 ≤ x− y ≤ u1 ∧ l2 ≤ x+ y ≤ u2 ∧ l3 ≤ x ≤ u3 ∧ l4 ≤ y ≤ u4
)
∧ T (x, y)

⇒
(
∆1 − u1 ≤ x+ y ≤ ∆1 − l1 ∧∆2 − u2 ≤ x− y ≤ ∆2 − l2

∧A− u3 ≤ x ≤ A− l3 ∧ l4 −B ≤ y ≤ u4 −B

)
,

where ∆1 = A−B and ∆2 = A+B. The associated table of generated constraints
is given in Figure 3. The use of this table is once again illustrated using an
example below.

Example 6. Let us consider the following loop:

−5 5

−5

5

x := 4 ; y := 6 ;
while (x+y ≥ 0)

i f (y ≥ 6) then
x := −x ; y := y−1;

else
x := x−1; y := −y ;

The state space for this program is again de-
picted on the right. For initial values and the
execution of the loop body, the following verifi-
cation conditions are generated:

– Initial condition:

l1 ≤ −2 ≤ u1 ∧ l2 ≤ 10 ≤ u2 ∧ l3 ≤ 4 ≤ u3 ∧ l4 ≤ 6 ≤ u4 .
9 The closure of (x− y ≥ 3 ∧ x ≤ 4) gives (y ≤ 1 ∧ x+ y ≤ 5).

10 Interproc outputs 2 ≤ x− y ≤ 10 ∧ 4 ≤ x+ y ≤ 10 ∧ 4 ≤ x ≤ 10 ∧ 0 ≤ y ≤ 7
2

[sic].

20

– Branch 1:(
l1 ≤ x− y ≤ u1 ∧ l2 ≤ x+ y ≤ u2
∧ l3 ≤ x ≤ u3 ∧ l4 ≤ y ≤ u4

)
∧ T1(x, y)

⇒
(

1− u1 ≤ x+ y ≤ 1− l1 ∧ −1− u2 ≤ x− y ≤ −1− l2
∧ −u3 ≤ x ≤ −l3 ∧ 1 + l4 ≤ y ≤ 1 + u4

)
,

where ∆1 = 1, ∆2 = −1 and T1(x, y) = (x+ y ≥ 0 ∧ y ≥ 6).
– Branch 2:(

−u1 ≤ y − x ≤ −l1 ∧ l2 ≤ y + x ≤ u2
∧ l4 ≤ y ≤ u4 ∧ l3 ≤ x ≤ u3

)
∧ T2(x, y)

⇒
(
l1 + 1 ≤ y + x ≤ u1 + 1 ∧ −1− u2 ≤ y − x ≤ −1− l2

∧ 1 + l3 ≤ x ≤ 1 + u3 ∧ −u4 ≤ y ≤ −l4

)
,

where T2(x, y) = (x+ y ≥ 0 ∧ y ≤ 5 ∧ x ≥ −5 ∧ x− y ≥ −10).11

From the table, we get the following parameter constraints:

l1 ≤ −2 ∧ u2 ≥ 10 ∧ −1 ≤ l1 + u2 ≤ 1

∧ l2 ≤ −11 ∧ u1 ≥ 1 ∧ l2 + u1 ≤ −1 ∧ −1 ≤ u2 − u1 ≤ 1.

∧ l3 ≤ −6 ∧ u3 ≥ 4 ∧ u3 + l3 = 0

∧ l4 ≤ −5 ∧ u4 ≥ 6 ∧ u4 + l4 ≥ 0

Making the lis as large as possible, and uis as small as possible, we get:

l1 = −9, u1 = 9, l2 = −11, u2 = 10, l3 = −6, u3 = 6, l4 = −5, u4 = 6.

The corresponding invariant is:12

−9 ≤ x− y ≤ 9 ∧ −11 ≤ x+ y ≤ 10 ∧ −6 ≤ x ≤ 6 ∧ −5 ≤ y ≤ 6 .

−5 5

−5

5

If the closure of the test conditions for the second branch is not computed,
then the invariant generated is weaker since the parameter constraint due to the
fact that the implicit constraint x ≥ −5 is omitted.

11 This is because the closure of the constraint (x+ y ≥ 0 ∧ y ≤ 5) also includes x ≥ −5
and x− y ≥ −10.

12 The Interproc tool’s output is y ≥ −5.

21

2.9 The Effects of Computing the Closure of the Tests
and Choosing Different Table Entries

The examples in the previous subsections illustrated how implicit constraints
derived from the test conditions in a program path can improve the strength of
invariants by generating additional constraints on the parameters. However, that
is not always the case. The following example is a slight adaptation of Example 6.

Example 7. Let us consider the following loop:

x := 4 ; y := 6 ;
while (x+y ≥ 0)

i f (y ≥ 6) then
x := −x ; y := y−1;

else
x := −x ; y := −y ;

The parameter constraints after computing the closure x ≥ −5∧x− y ≥ −10 of
x+ y ≥ 0∧ y ≤ 5 in the second branch lead to the computation of the following
strongest invariant:

−10 ≤ x− y ≤ 10 ∧ −11 ≤ x+ y ≤ 10 ∧ −5 ≤ x ≤ 5 ∧ −5 ≤ y ≤ 6 .

In contrast, without generating implicit constraints, the strongest invariant gen-
erated is:

−9 ≤ x− y ≤ 9 ∧ −10 ≤ x+ y ≤ 10 ∧ −4 ≤ x ≤ 4 ∧ −5 ≤ y ≤ 6 .

The reader would note that −10 ≤ x + y is not closed; normalization would
transform this into −9 ≤ x+ y.

−5 5

−5

5

invariant with closure

−5 5

−5

5

invariant without closure

The optimal bound, based on the states, would be −1 ≤ x+ y. This effect stems
from the way we approximate the verification condition: To derive, say, the upper
bound for x in the presence of a sign-reversing assignment, we look at the part
of a verification condition involving x (and no other variable). Depending on
whether or not a test on x is present on the path, the condition may have one
of two forms:

x ≤ u3 =⇒ x ≤ A− l3 or

x ≤ u3 ∧ x ≤ e =⇒ x ≤ A− l3 .

22

The former implication is equivalent to u3 ≤ A− l3, which is the corresponding
table entry, and the latter is equivalent to u3 ≤ A − l3 ∨ e ≤ A − l3. Since the
introduction of disjunctions in this way would adversely affect the complexity,
our decision was to assume that the test x ≤ e carries more semantics and is
most likely the more restrictive of the two, and thus to choose e ≤ A − l3 as
the table entry. In the previous example, this choice did not lead to the optimal
result. The effect of choosing the right table entry is even more evident in the
following trivial example:

Example 8. Consider the following program:

x := 0 ;
while (x ≤ 10)

x := 1−x ;

The value of x jumps back and forth between 0 and 1 in each iteration and never
comes close to violating the loop condition. The optimal octagonal invariant,
which in one dimension is an interval, is 0 ≤ x ≤ 1.

With the table entry u3 ≤ A− l3 for the upper bound of x, we derive exactly
this invariant. Our heuristic that the loop condition should impact the invariant
is not optimal for this loop. So with the table entry e ≤ A − l3, we instead
derive −9 ≤ x ≤ 10, which is exactly what also Interproc returns as the loop’s
invariant.

Below we discuss how the structure of parameter constraints generated by
the above method can be exploited to develop fast methods to checking their
satisfiability, generating an assignment to parameters to result in an invariant,
as well as generating the strongest invariant.

The role of derived implicit constraints obtained from the closure operation
and their relationship to different possible table entries needs further investi-
gation. Conversely, it might also be useful to investigate dropping constraints
which are otherwise implied by the remaining constraints.

2.10 Programs with Multiple Loops

The proposed approach extends to programs containing several loops, both
nested and sequential. The verification conditions for such programs will of-
ten relate two invariants associated with different loops, i.e. they take a shape
like

(I(x, y) ∧ T (x, y)) =⇒ J(x′, y′) ,

where I and J are the two invariants that are involved. Following our quantifier
elimination approach, the verification conditions can as before be approximated
by constraints on the parameters using similar tables to the ones presented in
Figures 1–3, which now contain constraints on the parameters of both invariants.
Due to lack of space, we restrict ourselves to illustrating this extension on an
example.

23

Example 9. Consider the following nonterminating program that contains two
nested loops.

0 5 10
0

5
x := 0 ; y := 5 ;
while (true) do

i f (x < 10 and y = 5) then
x := x+1;

else i f (x = 10 and y > 0) then
y := y−1;

else
while (y < 5) do

x := x−1; y := y+1;

In the depiction of this program’s state space, states reachable at the outer loop
are indicated by the continuous line and states reachable at the inner loop are
indicated by the dotted line.

Let I(x, y) be the invariant associated with the outer loop with parameters
l1, l2, l3, l4, u1, u2, u3, u4. Similarly, let J(x, y) be the invariant associated with the
inner loop with parameters l′1, l

′
2, l
′
3, l
′
4, u
′
1, u
′
2, u
′
3, u
′
4. Besides verification condi-

tions of the form discussed above, there are two verification conditions relating
I(x, y) to J(x, y) and vice versa.

(i) (J(x, y) ∧ ¬(y < 5)) =⇒ I(x, y), and

(ii) (I(x, y) ∧ ¬(x < 10 ∧ y = 5) ∧ ¬(x = 10 ∧ y > 0)) =⇒ J(x, y).

These verification conditions relate parameters of the two loop invariants. From
condition (i), for example, we can derive the constraints l′1 ≤ l1 and u1 ≤ u′1
and similarly for other parameters; because of the test ¬(y < 5), or equivalently
¬(y ≤ 4), we get l4 ≤ 5. The loop invariants generated by the proposed approach
are

I(x, y) = J(x, y) =

(
x− y ≤ 10 ∧ 5 ≤ x+ y ≤ 15
∧ x ≤ 10 ∧ 0 ≤ y ≤ 5

)
,

or after closure:

I(x, y) = J(x, y) =

(
−5 ≤ x− y ≤ 10 ∧ 5 ≤ x+ y ≤ 15

∧ 0 ≤ x ≤ 10 ∧ 0 ≤ y ≤ 5

)
.

0 5 10
0

5

This is indeed the strongest octagonal invariant for this program.

24

2.11 Strongest Invariants and Complexity

As the reader would have noticed, every entry in each of the three tables is also
an octagonal constraint on at most two parameters. Constraints on parameters
imposed due to initialization are also octagonal. Further, there are constraints
li ≤ ui relating a lower bound with the associated upper bound. Most impor-
tantly, even though there are 2n2 parameters in a parametrized invariant, param-
eter interaction is localized. Constraints can be decomposed into disjoint parts
based on parameters appearing in them, so that parameters appearing in one
subset of constraints do not overlap with parameters appearing in other subsets
of constraints. Consequently, a large formula expressed using many parameters
can be decomposed into smaller subformulas expressed using a few parameters.
And each of these subformulas can be processed separately.

We illustrate this using the parameter constraints generated in Example 6:

l1 ≤ −2 ∧ u1 ≥ 1 ∧ l2 ≤ −11 ∧ u2 ≥ 10 ∧ l3 ≤ −6 ∧ u3 ≥ 4

∧ l4 ≤ −5 ∧ u4 ≥ 6 ∧ −1 ≤ l1 + u2 ≤ 1 ∧ l2 + u1 ≤ −1

∧ u3 + l3 = 0 ∧ −1 ≤ u2 − u1 ≤ 1 ∧ u4 + l4 ≥ 0.

The above constraints can be separated into three disjoint parts S1 ∧ S2 ∧ S3,
where

S1 = (l1 ≤ −2 ∧ u1 ≥ 1 ∧ l2 ≤ −11 ∧ u2 ≥ 10 ∧ −1 ≤ l1 + u2 ≤ 1

∧ l2 + u1 ≤ −1 ∧ −1 ≤ u2 − u1 ≤ 1) ,

S2 = (l3 ≤ −6 ∧ u3 ≥ −4 ∧ u3 + l3 = 0) ,

S3 = (l4 ≤ −5 ∧ u4 ≥ 6 ∧ u4 + l4 ≥ 0) .

Each of these subsystems can be solved separately, reducing the complexity of
parameter constraint solving to O(m), where m is the number of constraints,
since the number of parameters is constant (2 or 4). The closure of S1 gives

l1 ≤ −2 ∧ −u1 ≤ −9 ∧ l2 ≤ −11 ∧ −u2 ≤ −10 ∧ −l1 − u2 ≤ 1

∧ l1 + u2 ≥ 1 ∧ l2 + u1 ≤ −1 ∧ u2 − u1 ≤ 1 ∧ l2 + u2 ≤ 0 ∧ l2 − l1 ≤ 1 .

The maximum values of l1 and l2 are, respectively, −9,−11; the minimum values
of u1 and u2 are 9 and 10, respectively. For S2, its closure adds l3 ≤ −6, −u3 ≤
−6, and l3 + u3 = 0. The maximum value of l3 is −6, the minimum value of u3
is 6. For S3, its closure is itself; the maximum value of l4 is −5; the minimum
value of u4 is 6. These parameter values give the optimal invariant:

−9 ≤ x− y ≤ 9 ∧ −11 ≤ x+ y ≤ 10 ∧ −6 ≤ x ≤ 6 ∧ −5 ≤ y ≤ 6.

As was stated above, the Interproc tool computes a much weaker invariant.

With these considerations in mind, it can be shown that program analy-
sis using our geometric heuristic for quantifier elimination for octagons takes
quadratic time in the number of program variables:

25

Theorem 10. A constraint description of octagonal loop invariants for a pro-
gram can be automatically derived using the geometric quantifier elimination
heuristics proposed above in O(k ·n2+p) steps, where n is the number of program
variables, k is the number of program paths, and p is the size of the program’s
abstract syntax tree.

Proof. There are two steps involved in automatically deriving an octagonal in-
variant, and the complexity of each step is analyzed below.

First, for every program path all tests performed must be collected as well
as the cumulative effect of assignment statements on program variables must be
computed to generate a verification condition. This can be done in O(p) steps
using a standard Hoare-style backward analysis.

For every pair of distinct program variables, there are at most 8 types of
atomic formulas appearing as tests in a given program path (after removing
redundant tests which again can be performed globally in O(p) steps); the local
closure of these tests is performed in time O(n2) for each path. From this, the
verification condition for each path can be constructed in constant time. The
generation of parameter constraints involves one table look-up for each lower
and upper bound of the expressions x, x+ y, x− y, where x and y are program
variables. As mentioned before, there are O(n2) tests to consider for each path
(present or absent) and thus also O(n2) table look-ups, each of which takes
constant time. Given all k program paths, O(k · n2) parameter constraints are
generated in O(k · n2) steps. ut

The result of the presented algorithm does not consist of an explicit list of
invariants for the program’s loops, but it implicitly describes the invariants by
constraints on their parameters. Each of the usually infinitely many instantia-
tions of the parameters satisfying the constraints describes one list of invariants.
Among these, we can effectively extract a unique strongest list of invariants that
implies all other described invariant lists and that is (globally) closed.

Lemma 11. From the set of constraints for a program with a single loop, com-
puted by our algorithm and described by constraints on the invariants’ param-
eters, the unique strongest one can be automatically derived in O(k · n2) steps,
where n is the number of program variables and k is the number of program
paths.

Proof. Using the algorithm by Bagnara et al. [3], it is possible to generate the
maximum value of each lower bound parameter li (−∞ if none exists) as well
as the minimum value of each upper bound parameter uj (similarly +∞ if none
exists) as follows:

For every li that has a maximum value in Z, there is an invariant in which
li takes that maximum value allowed by the constraints; similarly, for every uj
that has a minimum value in Z, there is also an invariant in which uj takes the
minimum value allowed by the constraints (as otherwise, it would be possible
to further tighten the associated octagon using the closure operation). If there
is no invariant where li or ui has a value in Z, they are always −∞ or ∞,

26

respectively. The conjunction of any two octagonal invariants thus generated
is also an octagonal invariant. It thus follows that the invariant in which li’s
have the maximum of all their lower bounds and uj ’s have the minimum of all
their upper bounds gives an octagonal invariant that implies all other invariants
described by the constraints.

The key to computing these optimal bounds efficiently lies in decomposing
the parameter constraints into disjoint subsets of constant size that do not in-
teract with each other:

From the above tables, it is clear that for any particular program variable
x, its lower bound l and upper bound u can be related by constraints, but
these parameters do not appear in relation with other parameters. This has also
been discussed at the beginning of the current subsection. Thus for a particular
program variable x, all constraints on l and u can be analyzed separately without
having to consider other constraints. Their satisfiability as well as lower and
upper bounds on these parameters can be computed in linear time the number
of constraints relating l and u, which is at most 2 per path, i.e. O(k): Since there
are only a constant number of parameters in these constraints (namely 2), the
algorithm for tight integral closure in [3] takes time proportional to the number
of constraints on these two parameters. There are n variables, so computing their
optimal lower and upper bounds takes O(k · n).

Similarly, for each variable pair (xi, xj) the parameters expressing lower and
upper bounds for xi − xj and xi + xj appear together in table entries, and they
do not appear in relation with other parameters. So each of those parameter
sets of constant size 4 can be analyzed independently. There are O(n2) variable
pairs, so analogously to above, computing their optimal lower and upper bounds
takes O(k · n2).

Overall, the strongest invariant can be computed from a conjunction of pa-
rameter constraints in O(k ·n2) steps. By construction of the algorithm by Bag-
nara et al., every program state satisfying this invariant satisfies all invariants
described by the initial parameter constraints. ut

Theorem 12. From the set of constraints for a program with no nesting of
loops, computed by our algorithm and described by constraints on the invariants’
parameters, the unique strongest one can be automatically derived in O(k · n2)
steps, where n is the number of program variables and k is the number of program
paths.

Proof. There are no nested loops, so the loops can be partially ordered by their
order of execution. For each verification condition (I(X) ∧ T (X)) =⇒ J(X ′)
involving two different parameterized loop invariants I and J , the loop for I is
then executed before the one for J .

This ordering is obviously well-founded. We can thus examine the loops one
at a time, inductively assuming that strongest invariants have already been com-
puted for all loops that are executed before the one under consideration. When
we analyze each loop, we can without loss of generality assume that all con-
straints include only parameters for the current loop: Optimal parameters for

27

the previous loops have already been instantiated and constraints for following
loops do not impose any upper bounds on parameters li or lower bounds for
parameters ui of the current loop. We can also safely assume that during the
generation phase, the constraints have already been assembled following the ex-
ecution order, so we do not need to sort the constraints now to access the ones
for the current loop.

Then the result follows directly from Lemma 11, since the global number
of program paths corresponds to the sum of paths that are relevant for the
individual loops. ut

Our complexity analysis contains a parameter whose significance we have
mostly ignored so far: The number k of program paths. In principle, it is easy to
construct a program with 2p program paths, where p is the size of the program,
by simply making every statement a conditional. This would mean that our
analysis would not scale at all.

In practice, however, a program has a far less paths; see also [12, 17] where
techniques for managing program paths and associated verification conditions are
discussed. Since our analysis is based on computing invariants that are satisfied
at certain points in the program, the number of paths can also be kept in check by
introducing invariants at additional program locations. These invariants provide
a convenient way to trade off precision for complexity.

Example 13. Consider the following program stub:

x=0; y=0;
while (true) do

i f . . . then . . . ;
i f . . . then . . . ;
// add i n v a r i a n t J here
i f . . . then . . . ;
i f . . . then . . . ;

To compute the invariant I for this loop, 24 = 16 paths inside the loop have to
be analyzed, depending on which of the 4 conditionals are used and which are
not. If we introduce an additional invariant J after the second conditional, there
are only 22 paths leading from I to J and another 22 paths from J to I, or 8
paths in total.

In general, adding an invariant after every conditional to directly merge the
control flows would lead to an analysis resembling an abstract interpretation
approach. As a side effect, such additional invariants allow for a convenient way
to check assertions: Just add invariants at the locations of all assertions, analyze
the program and check whether the computed invariants entail the corresponding
assertions.

28

3 Invariant Generation with Max-Plus Polyhedra

In many cases where programs contain loops with several execution paths, purely
conjunctive invariants can only inadequately model the program semantics.

Example 14. The strongest invariant at the loop entry point in the program

0 5 10
0

5

10
x := 0 ; y := 5 ;
while (x < 10) do

i f (x < 5) then
x := x+1;

else
x := x+1; y := y+1;

is (0 ≤ x ≤ 5 ∧ y = 5) ∨ (5 ≤ x ≤ 10 ∧ x = y).
This invariant is depicted on the right. It consists
of two lines and is clearly not convex. Hence it
cannot be expressed as a conjunction of linear constraints, including octagonal
constraints or even general polyhedra.

One way of allowing more expressive loop invariants including disjunctive
invariants is to use formulas defining so-called max-plus polyhedra, as proposed
by Allamigeon [1, 6]. Such a formula allows disjunctions of a subset of octagonal
constraints, particularly of constraints of the form li ≤ xi ≤ ui and li,j ≤
xi − xj ≤ ui,j . Atomic formulas of the form a ≤ xi + xj ≤ b are not allowed in
a strict max-plus setting. More specifically, the allowed disjunctions are those
that can be written as

max(x1 + a1, . . . , xn + an, c) ≤ max(x1 + b1, . . . , xn + bn, d) ,

where ai, bi, c, d are integers or −∞. For example,

max(x+ 0, y −∞,−∞) ≤ max(x−∞, y + b, d)

would represent the disjunction x ≤ d ∨ x− y ≤ b.
For a reader who is mainly interested in the high-level concepts, it suffices

to note that sets of linear constraints formed in this way not with the standard
addition and multiplication operators, but instead with max and +, can also be
regarded as describing convex state spaces, which only have a different shape
than for the standard operators.

Formally, the basis of max-plus polyhedra is formed by the max-plus semiring
(Zmax,⊕,⊗). The elements of Zmax are those of Z and −∞, and the semiring
addition ⊕ and multiplication ⊗ are given by x⊕y = max(x, y) and x⊗y = x+y,
with additive unit 0 = −∞ and multiplicative unit 1 = 0. The usual order on Z
extends to Zmax by making −∞ the least element. A max-plus polyhedron is a
subset of Znmax satisfying a finite set of linear max-plus inequalities of the form

(a1 ⊗ x1)⊕ · · · ⊕ (an ⊗ xn)⊕ c ≤ (b1 ⊗ x1)⊕ · · · ⊕ (bn ⊗ xn)⊕ d ,

where ai, bi, c, d ∈ Zmax.

29

Max-plus convex sets were introduced by Zimmermann [33], a general in-
troduction can be found for example in Gaubert and Katz [13]. They are more
expressive than Difference Bound Matrices: On the one hand, every invariant
that can be represented by Difference Bound Matrices can also be represented
by a max-plus polyhedron. To convert a Difference Bound Matrix into a max-
plus polyhedron, each constraint xi − xj ≤ c is simply written as the equivalent
max-plus constraint 0⊗ xi ≤ c⊗ xj . On the other hand, a max-plus polyhedron
can in general not be represented by a single Difference Bound Matrix. For ex-
ample, the invariant from example 14 is a max-plus polyhedron but it cannot
be represented by a Difference Bound Matrix, nor by any other other form of
conjunctions of linear constraints.

Max-plus polyhedra are convex sets (with respect to the max-plus semiring).
As such, they can be represented in multiple ways, just like traditional polyhe-
dra. Of particular interest is the representation as the convex hull of a finite set of
generator points (analogous to a frame representation of a convex polyhedron; cf.
Allamigeon et al. [1] for details on how to convert between the representations).
If p1, . . . , pn are points, we denote the max-plus polyhedron that is generated
by these points as their convex hull by co({p1, . . . , pn}). In contrast to standard
polyhedra, the generator representation is arguably more intuitive for humans
than the constraint representation for max-plus polyhedra (due to constraints
like max(x, y + 1, 2) ≤ max(x+ 2, y)), and we will utilize it throughout most of
this article. To keep the presentation even more intuitive, we will also restrict
ourselves mainly to bounded polyhedra in Z2

max, i.e. to programs with two vari-
ables whose range during program execution is bounded. As is customary when
working with max-plus polyhedra, we write points in Z2

max as column vectors,
i.e. the point with x-coordinate 0 and y-coordinate 5 is written as

(
0
5

)
.

Example 15. Consider the max-plus polyhedron with generators
(
0
5

)
and

(
10
10

)
:

As the convex hull of these two points, this max-plus polyhedron contains all
points of the form α ⊗

(
0
5

)
⊕ β ⊗

(
10
10

)
with 0 ≤ α, β and α ⊕ β = 1. Expressed

in standard arithmetic, these are the points of the form
(
max(α+0,β+10)
max(α+5,β+10)

)
where

max(α, β) = 0. It is easy to verify that this max-plus polyhedron is exactly
the invariant from Example 14. A constraint representation of this max-plus
polyhedron is

0 ≤ x ≤ 10 5 ≤ y ≤ 10

− 5 ≤ x− y ≤ 0 0⊗ y ≤ (0⊗ x)⊕ 5 (i.e. y ≤ max(x, 5)) .

This representation is of course harder to understand for the human reader than
the one from Example 14. However, it is a pure (max-plus) conjunction, which
is the key to it’s fully automatic treatment.

To better understand the possible shapes of invariants, let us consider the
case of a bounded two-dimensional max-plus polyhedron generated by two points(
a1
b1

)
and

(
a2
b2

)
. The possible shapes of such a max-plus polyhedron are depicted

in Figure 4, where we assume, without loss of generality, a1 ≤ a2.

30

(
a1
b1

) (
a1
b1

)
(
a1
b1

)(
a2
b2

)
(
a2
b2

)

(
a2
b2

)

Shape 1:
b1 ≤ b2
a1−b1 ≤ a2−b2

Shape 2:
b1 ≤ b2
a1−b1 ≥ a2−b2

Shape 3:
b1 ≥ b2

Fig. 4. Possible shapes of bounded two-dimensional max-plus polyhedra

0 5 10
0

5In general, also in higher dimensions, two gen-
erators are always connected by lines that run par-
allel, perpendicular, or at a 45 degree angle with
all coordinate axes. A polynomial with multiple
generators will consist of all these connections as
well as the area that is surrounded by the connec-
tions. Such an example with four generators (marked by dots) can be seen to the
right. Knowledge about these shapes will be used in the next section to develop
a quantifier elimination heuristics based on table lookups, comparable to the one
for octagonal constraints.

3.1 Invariant Generation

Similar to the procedure for octagonal constraints described in the previous
section, we derive loop invariants described by max-plus polyhedra as follows:
We start with a parametrized invariant given as a max-plus polyhedron M with
a predetermined number of parametrized generators. Each path through the loop
gives rise to a verification condition M ∩ Γ ⊆ M ′, where Γ is the polyhedron
defined by the branch and loop tests along the path and M ′ arises from M as
usual by the translation induced by the executed assignments. This verification
condition can equivalently be expressed as (M \M ′) ∩ Γ = ∅. We then look up
a representation of M \M ′ from a precomputed table that describes M \M ′
as a set of max-plus polyhedra and express the requirement that Γ cuts off all
of M \M ′ to convert the verification condition into a set of ground constraints
on the parameters of M . The verification condition for the loop entry is also
encoded by such constraints.

Every solution of the constraints then corresponds to a valid loop invariant.
As a heuristics to select a strong invariant, we choose a solution of the constraints
that minimizes the distance between the generators: We maximize a1 and b1 and
minimize a2 and b2, just as we maximized the li and minimized the ui before.
We will show in Theorem 18 that for two generators, this results in an optimal
solution.

Example 16. To find a loop invariant for Example 14, we nondeterministically
guess that the invariant is a max-plus polyhedron M = co({

(
a1
b1

)
,
(
a2
b2

)
}) of shape

1, as depicted below, and look for suitable instantiations of the parameters ai
and bi. The loop contains two execution paths, depending on whether or not the
condition x<5 is satisfied.

31

(
a2−(b2−b1)−1

b1

) (
a2−(b2−b1)

b1

)(
a2−1
b2−1

)(
a1
b1

)
(
a2
b2

)Assumed shape of M : Analysis of path 1: Analysis of path 2:

M ′1

M ′2

The loop invariant M must be satisfied when the loop is entered. We guess
that the initial value is situated on the horizontal branch of M . This results in
the constraints a1 ≤ 0 ≤ a2 − (b2 − b1) and b1 = 5.

Furthermore, the loop invariant must be maintained during the execution of
the loop. Consider the first path with the assignment x := x+1. The verification
condition for this branch is(

x
y

)
∈ co({

(
a1
b1

)
,
(
a2
b2

)
}) ∧ (x < 10 ∧ x < 5) =⇒

(
x+1
y

)
∈ co({

(
a1
b1

)
,
(
a2
b2

)
})

or equivalently(
x
y

)
∈ co({

(
a1
b1

)
,
(
a2
b2

)
}) ∧ (x < 10 ∧ x < 5) =⇒

(
x
y

)
∈ co({

(
a1−1
b1

)
,
(
a2−1
b2

)
}) .

So if M ′1 is the max-plus polyhedron generated by
(
a1−1
b1

)
and

(
a2−1
b2

)
, this veri-

fication condition can be rewritten, following the considerations above, as

(M \M ′1) ∩ {x | x < 10 ∧ x < 5} = ∅ .

The relation between M and M ′1 is depicted in the middle of the above figure.
For M to be an invariant, it is necessary that every point in M \M ′1, i.e. every

point in M right of
(
a2−(b2−b1)−1

b1

)
, is cut off by the constraints x < 10∧x < 5 (or

equivalently x ≤ 4) along the path. This directly implies a2 − (b2 − b1)− 1 ≥ 4.
For the second path with the assignment x := x+1; y := y+1, let M ′2 be the

max-plus polyhedron generated by
(
a1−1
b1−1

)
and

(
a2−1
b2−1

)
. For M to be an invariant,

it is necessary that every point in M\M ′2, i.e. every point in M left of
(
a2−(b2−b1)

b1

)
or right of

(
a2−1
b2−1

)
, is cut off by the constraints x < 10 ∧ x ≥ 5 (or equivalently

x ≤ 9∧ x ≥ 5) along the path. This implies a2 − (b2 − b1) ≤ 5 and a2 − 1 ≥ 9.13

All these constraints can be combined to a1 ≤ 0, b1 = 5, a2 ≥ 10, and
a2−b2 = 5. Every instantiation of the parameters that satisfies these constraints
leads to a valid loop invariant. To find the strongest invariant, we maximize a1
and b1 and minimize a2 and b2. This yields the max-plus polyhedron generated
by the two points

(
0
5

)
and

(
10
10

)
.

Had we guessed shape 2 or 3 for M , the resulting set of constraints would
have been unsatisfiable, indicating that the loop does not have an invariant that
is expressible as one of these shapes.

In general, multiple tests in Γ may be used to cut off a component of M \M ′.
Similar to our approach to quantifier elimination for octagons, we approximate

13 The two other possibilities a1 ≥ 10 and a2 < 5 that would result in all of M being
cut off would later contradict the loop entry condition.

32

assignment statements max-plus polyhedra to be cut off

A = 0, B = 0 –

A > 0, B = 0, A ≤ ∆a −∆b co({
(
a2−∆b−A+1

b1

)
,
(
a2
b2

)
})

A > 0, B = A, A ≤ ∆b co({
(
a1
b1

)
,
(
a2−∆b−1

b1

)
}), if ∆a 6= ∆b

co({
(
a2−A+1
b2−A+1

)
,
(
a2
b2

)
})

A > B,B > 0, ∆ ≤ ∆a −∆b, B ≤ ∆b co({
(
a1
b1

)
,
(
a2−∆b−∆−1

b1

)
}), if ∆b +∆ 6= ∆a

co({
(
a2
b2

)
,
(
a2−∆b−∆+1

b1

)
})

A < 0, B = 0, |A| ≤ ∆a −∆b co({
(
a1
b1

)
,
(
a1−A−1

b1

)
})

co({
(
a2−∆b+1
b1+1

)
,
(
a2
b2

)
}), if ∆b 6= 0

A < 0, B = A, |A| ≤ ∆b co({
(
a1
b1

)
,
(
a2−∆b−A−1
b1−A−1

)
})

A < B,B < 0, ∆ ≤ ∆a −∆b, |B| < ∆b co({
(
a1
b1

)
,
(
a2−∆b−B−1
b1−B−1

)
})

co({
(
a2
b2

)
,
(
a2−∆b−B+1
b1−B+1

)
}), if B +∆b 6= 0

all other cases co({
(
a1
b1

)
,
(
a2
b2

)
})

Fig. 5. Max-plus polyhedra to be cut off for shape 1

the verification conditions by assuming instead that only one of the tests in Γ
may be used for an individual component. Due to this approximation, exactly
which parts of a polyhedron have to be cut off by the constraints along a given
path can be precomputed, just like for octagonal constraints. This gives rise to
a finite table and reduces the analysis of each path in a loop to a table look-up.
Such tables for the three shapes from Figure 4 are presented in Figures 5–7. The
tables link assignments x := x+A; y := y+B along a path with the respective
max-plus polyhedra that must be cut off. Throughout the tables, we use the
abbreviations ∆a = a2 − a1, ∆b = b2 − b1, and ∆ = A−B.

Theorem 17. The loop verification condition for an invariant of shape 1–3 and
a path in the loop with assignments x := x+A; y := y+B and path condition Γ
is equivalent to the condition that Γ ∩M = ∅ for each max-plus polyhedron M
given in the respective entry of Figures 5–7.

Proof. The proofs of correctness for all of the various table entries are very
similar. As a typical representative, we show how to derive the entries for shape
1 in the case A = B > 0. Let M be the assumed (parametrized) invariant and
let MA result from translating M by −A along both axes. Furthermore, let Γ
be the set of all points that satisfy the constraints along the given path.

To obtain an invariant, M has to be chosen such that every point in M ∩ Γ
is also in MA. Considering a generic point p =

(
α1+a1
α1+b1

)
⊕
(
α2+a2
α2+b2

)
with α1⊕α2 =

1 = 0 in M , this means that the parameters ai, bi must be such that if p ∈ Γ ,
then p can be written as p =

(
β1+a1−A
β1+b1−A

)
⊕
(
β2+a2−A
β2+b2−A

)
with β1 ⊕ β2 = 1 = 0.

33

assignment statements max-plus polyhedra to be cut off

A = 0, B = 0 –

A = 0, B > 0, B ≤ ∆b −∆a co({
(

a1
b2−∆a−B+1

)
,
(
a2
b2

)
})

A = 0, B < 0, |B| ≤ ∆b −∆a co({
(
a1
b1

)
,
(

a1
b1−B−1

)
})

co({
(

a1+1
b2−∆a+1

)
,
(
a2
b2

)
}), if a1 6= a2

A > 0, B = A, A ≤ ∆a co({
(
a1
b1

)
,
(

a1
b2−∆a−1

)
}), if ∆a 6= ∆b

co({
(
a2
b2

)
,
(
a2−A+1
b2−A+1

)
})

A > 0, B > A, A ≤ ∆a,∆ ≥ ∆b −∆a co({
(
a1
b1

)
,
(

a1
b2−∆a+∆−1

)
})

co({
(
a2
b2

)
,
(

a1
b2−∆a+∆+1

)
}), if ∆a −∆ 6= ∆b

A < 0, B = A, |A| ≤ ∆a co({
(
a1
b1

)
,
(

a1−A−1
b2−∆a−A−1

)
})

A < 0, B < A, |A| ≤ ∆a,∆ ≤ ∆b −∆a co({
(
a1
b1

)
,
(

a1−A−1
b2−∆a−A−1

)
})

co({
(
a2
b2

)
,
(

a1−A+1
b2−∆a−A+1

)
}), if ∆b +A 6= 0

all other cases co({
(
a1
b1

)
,
(
a2
b2

)
})

Fig. 6. Max-plus polyhedra to be cut off for shape 2

assignment statements max-plus polyhedra to be cut off

A = 0, B = 0 –

A = 0, B > 0, B ≤ −∆b co({
(
a1
b1

)
,
(

a2
b1−B+1

)
})

A = 0, B < 0, B ≥ ∆b co({
(
a1
b1

)
,
(
a2−1
b1

)
}), if a1 6= a2

co({
(
a2
b2

)
,
(

a2
b2−B−1

)
})

A > 0, B = 0, A ≤ ∆a co({
(
a2
b2

)
,
(
a2−A+1

b1

)
})

A > 0, B < 0, A ≤ ∆a, B ≥ ∆b co({
(
a1
b1

)
,
(
a2−A−1

b1

)
}), if A 6= ∆a

co({
(
a2
b2

)
,
(
a2−A+1

b1

)
})

A < 0, B = 0, |A| ≤ ∆a co({
(
a1
b1

)
,
(
a1−A−1

b1

)
})

co({
(
a2
b2

)
,
(
a2
b1−1

)
}), if b1 6= b2.

A < 0, B > 0, |A| ≤ ∆a, B ≤ −∆b co({
(
a1
b1

)
,
(

a2
b1−B+1

)
})

co({
(
a2
b2

)
,
(

a2
b1−B−1

)
}), if ∆b +B 6= 0.

all other cases co({
(
a1
b1

)
,
(
a2
b2

)
})

Fig. 7. Max-plus polyhedra to be cut off for shape 3

34

– Case −(b2 − b1) ≤ α2 ≤ −A. Then α1 = 0. Choose β1 = 0, β2 = α2 + A to
show that p ∈MA.

(β1 + a1 −A)⊕ (β2 + a2 −A) = (a1 −A)⊕ (α2 + a2) = α2 + a2

(because α2 + a2 ≥ b1 − b2 + a2 ≥ a1 > a1 −A due to the shape.)

(β1 + b1 −A)⊕ (β2 + b2 −A) = (b1 −A)⊕ (α2 + b2) = α2 + b2

(because α2 + b2 ≥ b1 > b1 −A)

So points that fall into this case are in the invariant and do not restrict the
choice of the parameters.

– Case α2 > −A. If we assume p ∈MA, then we have the following contradic-
tion:

b2 −A
α2>−A
< α2 + b2

def ⊕
≤ (α1 + b1)⊕ (α2 + b2)

p∈MA

= (β1 + b1 −A)⊕ (β2 + b2 −A) ≤ (b1 −A)⊕ (b2 −A)
b1≤b2
≤ b2 −A.

So p 6∈MA, which implies p 6∈ Γ .
– Case α2 < −(b2 − b1). Then α1 = 0. Again assume p ∈ MA. A look at the
y-coordinate reveals:

b1 = b1 + ((

=0︷︸︸︷
α1 +

=0︷ ︸︸ ︷
b1 − b1)⊕ (

<0︷ ︸︸ ︷
α2 + b2 − b1))

= (α1 + b1)⊕ (α2 + b2)
p∈MA

= (β1 + b1 −A)⊕ (β2 + b2 −A)

Because β1+b1−A < b1, this means that b1 = β2+b2−A, or β2 = b1−b2+A.
So β2 = −(b2 − b1) − A < 0, i.e. β1 = 0 because of β1 ⊕ β2 = 0. For the
x-coordinate, this leads to the following contradiction:

a1
def ⊕
≤ a1 ⊕ (α2 + a2) = (

=0︷︸︸︷
α1 +a1)⊕ (α2 + a2)

p∈MA

= (β1 + a1 −A)⊕ (β2 + a2 −A) = (

<a1︷ ︸︸ ︷
a1 −A)⊕ (b1 − b2 + a2)

shape
< a1

This means that the polyhedron has to degenerate to a line or p 6∈ Γ .

Overall, we have the following result:

– Γ must cut off the top right part of the polyhedron (case 2).
– If b1 − b2 + A > 0, Γ must cut off the left or lower arm. Otherwise either
a1 = b1 − b2 + a2, i.e. the whole polyhedron consists only of one arm, or Γ
must cut off the left or lower arm (case 3). ut

As a heuristic to reduce the computational cost, we usually assume that each
component of M \M ′ is cut off by a single constraint.

Note that Γ can contain any path constraint that the employed constraint
solver can handle. In particular, Γ is not restricted to a conjunction of constraints

35

of the form ±xi ≤ c or xi±xj ≤ c. E.g. in Example 14 and 16 the loop condition
3x+2y < 50 would have led to a similar analysis.

For two generators, our heuristics of minimizing the distance between the
generators leads to an optimal invariant.

Theorem 18. Among a set of bounded max-plus polyhedra with two generators(
a1
b1

)
and

(
a2
b2

)
, the state spaces described by those max-plus polyhedra that mini-

mize |a2 − a1|+ |b2 − b1| are minimal.

Proof. Since |a2 − a1| and |b2 − b1| are (discrete) nonnegative integers, the min-
imum is assumed, even if we consider an infinite set of bounded max-plus poly-
hedra.

A polyhedron of shape 1 contains (|a2 − a1| − |b2 − b1|) + |b2 − b1| + 1 =
|a2−a1|+1 points (over Z), independently of |b2−b1|. Analogously, a polyhedron
of shape 2 contains (|b2 − b1| − |a2 − a1|) + |a2 − a1|+ 1 = |b2 − b1|+ 1 points,
independently of |a2 − a1|, and one of shape 3 contains |a2 − a1|+ |b2 − b1|+ 1
points. So whatever the shape of the polyhedron, the described state space is
minimal whenever |a2 − a1|+ |b2 − b1| is minimal. ut

15 points 12 points

In the case of more than two generators, the
situation is more complicated, and indeed increas-
ing the Euclidean distance between two generators
may result in a smaller polyhedron. In practice,
however, the constraints imposed by the invariant
generation process usually circumvent this situa-
tion. The reason is that, for example in the depicted situation, generators of two
invariants can only differ by translations along the one-dimensional components
leading to them. So the leftmost generator can only be moved horizontally, the
lower one only vertically and the top one only along the diagonal. If generators
are moved in a different way, the result cannot be an invariant any more.

Example 19. As a simple example whose invariant cannot be expressed with two
generators, consider the following program:

0 5 10
0

5
x := 0 ; y := 0 ;
while (true) do

i f (y = 0 and x < 10) then
x := x+1;

else i f (x ≥ 10 and y < 5) then
y := y+1;

else x := x−1; y := y−1;

The minimal max-plus invariant for this loop is generated by the points
(
0
0

)
,
(
10
0

)
,

and
(
10
5

)
, that can be found with an analysis similar to the one shown above. Note

that the program is not terminating, and that the max-plus invariant consists
of two components of different codimension, namely the line 0 ≤ x ≤ 5 ∧ y = 0
and the triangle x ≤ 10 ∧ y ≥ 0 ∧ x − y ≥ 5. The true optimal invariant of the
program is the boundary of the one computed.

36

Example 20. Let us look again at the program from Example 9, which is also
nonterminating and contains a nested loop:

0 5 10
0

5
I

J

x := 0 ; y := 5 ;
while (true) do

i f (x < 10 and y = 5) then
x := x+1;

else i f (x = 10 and y > 0) then
y := y−1;

else
while (y < 5) do

x := x−1; y := y+1;

The minimal max-plus invariant J(x, y) for the inner loop is the polyhedron
generated by

(
5
0

)
,
(
5
5

)
, and

(
10
0

)
, i.e. the square 5 ≤ x ≤ 10 ∧ 0 ≤ y ≤ 5. The

resulting minimal max-plus invariant I for the outer loop is generated by
(
0
5

)
and

(
10
0

)
, i.e. it is the union of two (one-dimensional) lines. This invariant is also

the true optimal invariant of the loop.
In contrast, the octagonal invariant derived in Example 9 is a (two-dimen-

sional) polygon. Indeed, every invariant for the outer loop that is expressed as a
conjunction of traditional linear constraints is convex in the classical sense and
therefore must contain at least the whole convex hull of I.

4 Concluding Remarks and Future Work

We have presented a new approach for investigating quantifier elimination of a
subclass of formulas in Presburger arithmetic that exploits the structure of ver-
ification conditions generated from programs as well as the (lack of) interaction
among different variables appearing in a verification condition. This approach
has led to a geometric local method which is of quadratic complexity, much
lower than the complexity of invariant generation using other approaches. Fur-
thermore, the approach is amenable to development of additional heuristics that
can additionally exploit the structure of verification conditions. The invariants
generated by the proposed approach are of comparable strength to the invari-
ants generated by Miné’s method. To further improve the heuristics and assess
the mentioned scalability issues arising from large path numbers, we are imple-
menting the proposed approach and will experiment with it on a large class of
benchmarks.

As should be evident from the discussion in the previous section, the work
on max plus invariants is somewhat preliminary and still under progress. Of
course, we are implementing the derivation of max plus constraints as well and,
more importantly, investigate heuristics to make the approach scalable. While
the method can easily be extended to more generators to specify more and
more expressive disjunctive invariants, the complexity of quantifier elimination
heuristics increases with the number of generators, due to the large number of
possible shapes. We are currently exploring an alternative approach that uses a
representation of max plus invariants by constraints instead of generators.

37

References

1. X. Allamigeon. Static analysis of memory manipulations by abstract interpretation–
Algorithmics of tropical polyhedra, and application to abstract interpretation. PhD
thesis, PhD thesis, Ecole Polytechnique, Palaiseau, France, 2009.

2. Xavier Allamigeon, Stphane Gaubert, and Goubault. Inferring min and max in-
variants using max-plus polyhedra. In Mara Alpuente and Germn Vidal, editors,
Static Analysis, volume 5079 of Lecture Notes in Computer Science, pages 189–204.
Springer, 2008.

3. R. Bagnara, P. M. Hill, and E. Zaffanella. An improved tight closure algorithm
for integer octagonal constraints. In F. Logozzo, D. Peled, and L. Zuck, editors,
Verification, Model Checking and Abstract Interpretation: Proceedings of the 9th
International Conference (VMCAI 2008), volume 4905 of Lecture Notes in Com-
puter Science, pages 8–21, San Francisco, USA, 2008. Springer-Verlag, Berlin.

4. M. Bezem, R. Nieuwenhuis, and E. Rodriguez-Carbonell. Hard problems in max-
algebra, control theory, hypergraphs and other areas. Information Processing Let-
ters, 110(4):133–138, 2010.

5. B. Blanchet, P. Cousot, R. Cousot, J. Feret, L. Mauborgne, A. Miné, D. Monniaux,
and X. Rival. Design and implementation of a special-purpose static program ana-
lyzer for safety-critical real-time embedded software. The Essence of Computation,
pages 85–108, 2002.

6. Peter Butkovič. Max-Linear Systems: Theory and Algorithms. Springer Mono-
graphs in Mathematics. Springer, 2010.

7. Aziem Chawdhary, Byron Cook, Sumit Gulwani, Mooly Sagiv, and Hongseok Yang.
Ranking abstractions. In ESOP, pages 148–162, 2008.

8. P. Cousot and R. Cousot. Abstract Interpretation: a Unified Lattice Model for
Static Analysis of Programs by Construction or Approximation of Fixpoints. In
Conference Record of the Fourth Annual ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages, pages 238–252, Los Angeles, California,
1977. ACM Press, New York, NY.

9. P. Cousot, R. Cousot, J. Feret, L. Mauborgne, A. Miné, D. Monniaux, and X. Rival.
The Astrée analyzer. Programming Languages and Systems, pages 140–140, 2005.

10. P. Cousot and N. Halbwachs. Automatic Discovery of Linear Restraints among
Variables of a Program. In Conference Record of the Fifth Annual ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, pages 84–97, Tuc-
son, Arizona, 1978. ACM Press, New York, NY.

11. Patrick Cousot and Radhia Cousot. Abstract interpretation frameworks. Journal
of Logic and Computation, 2:511–547, 1992.

12. Cormac Flanagan and James B. Saxe. Avoiding exponential explosion: generating
compact verification conditions. In POPL, pages 193–205, 2001.

13. Stephane Gaubert and Ricardo Katz. Max-plus convex geometry. In Renate A.
Schmidt, editor, RelMiCS, volume 4136 of Lecture Notes in Computer Science,
pages 192–206. Springer, 2006.

14. S. Gulwani, S. Jha, A. Tiwari, and R. Venkatesan. Synthesis of loop-free programs.
In Proceedings of the 32nd ACM SIGPLAN conference on Programming language
design and implementation, pages 62–73. ACM, 2011.

15. Sumit Gulwani, Saurabh Srivastava, and Ramarathnam Venkatesan. Program
analysis as constraint solving. In PLDI, pages 281–292, 2008.

16. Sumit Gulwani and Ashish Tiwari. Constraint-based approach for analysis of
hybrid systems. In CAV, pages 190–203, 2008.

38

17. Thomas A. Henzinger, Ranjit Jhala, Rupak Majumdar, and Kenneth L. McMillan.
Abstractions from proofs. In Neil D. Jones and Xavier Leroy, editors, POPL, pages
232–244. ACM, 2004.

18. Charles Antony Richard Hoare. An axiomatic basis for computer programming.
Communications of the ACM, 12(10):576–580, 1969.

19. J. Jaffar, M. Maher, P. Stuckey, and R. Yap. Beyond finite domains. In Principles
and Practice of Constraint Programming, pages 86–94. Springer, 1994.

20. B. Jeannet, M. Argoud, and G. Lalire. The Interproc interprocedural analyzer.
21. Susmit Jha, Sanjit A. Seshia, and Ashish Tiwari. Synthesis of optimal switching

logic for hybrid systems. In EMSOFT’11, pages 107–116. ACM, 2011.
22. D. Kapur. A quantifier-elimination based heuristic for automatically generating

inductive assertions for programs. Journal of Systems Science and Complexity,
19(3):307–330, 2006.

23. Deepak Kapur. Automatically generating loop invariants using quantifier
elimination—preliminary report. Technical report, University of New Mexico, Al-
buquerque, NM, USA, 2004.

24. R. Loos and V. Weispfenning. Applying linear quantifier elimination. Computer
Journal, 1993.

25. A. Miné. Weakly relational numerical abstract domains. These de doctorat en
informatique, École polytechnique, Palaiseau, France, 2004.

26. S. Sankaranarayanan, H.B. Sipma, and Z. Manna. Non-linear Loop Invariant Gen-
eration using Gröbner Bases. Symp. on Principles of Programming Languages,
2004.

27. H. Sheini and K. Sakallah. A scalable method for solving satisfiability of integer
linear arithmetic logic. In Theory and Applications of Satisfiability Testing, pages
68–81. Springer, 2005.

28. Saurabh Srivastava, Sumit Gulwani, and Jeffrey S. Foster. From program verifica-
tion to program synthesis. In POPL, pages 313–326, 2010.

29. Thomas Sturm and Ashish Tiwari. Verification and synthesis using real quantifier
elimination. In ISSAC’11, pages 329–336. ACM, 2011.

30. Ankur Taly, Sumit Gulwani, and Ashish Tiwari. Synthesizing switching logic using
constraint solving. STTT, 13(6):519–535, 2011.

31. Bican Xia and Zhihai Zhang. Termination of linear programs with nonlinear con-
straints. J. Symb. Comput., 45(11):1234–1249, 2010.

32. Lu Yang, Chaochen Zhou, Naijun Zhan, and Bican Xia. Recent advances in pro-
gram verification through computer algebra. Frontiers of Computer Science in
China, 4(1):1–16, 2010.

33. Karel Zimmermann. A general separation theorem in extremal algebras. Ekonomia
Matematyczna Obzory, 13:179–201, 1977.

39

A Arithmetic of Infinity

It is convenient to introduce extend Z with −∞ and +∞, to stand for no lower
bound and no higher bound, respectively, for an arithmetic expression. Below,
arithmetic operators and ordering relations used in this paper are extended to
work on −∞ and +∞.

Addition

∀a a 6= +∞ =⇒ a+ (−∞) = −∞
∀b b 6= −∞ =⇒ b+ (+∞) = +∞
(+∞) + (−∞) is undefined

Negation and Subtraction

−(−∞) = +∞, −(+∞) = −∞
∀a, b a− b = a+ (−b)

Orderings

∀a (a 6= +∞) =⇒ (a < +∞)

∀a (a 6= −∞) =⇒ (a > −∞)

∀a (a ∈ Z) =⇒ ((+∞) + (−∞) > a)

∀a (a ∈ Z) =⇒ ((+∞) + (−∞) < a)

In particular, the relations ≤ and > are not complementary when infinities are
involved, and neither are ≥ and <.

Moreover, the equivalence a+ b ≤ a+ c ⇐⇒ b ≤ c that is regularly used to
simplify formulas over Z is not valid, for example +∞+ 1 ≤ +∞+ 0, but 1 6≤ 0.

40

