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ABSTRACT
Automated runtime complexity analysis can help developers de-
tect egregious performance issues. Existing runtime complexity
analysis are often done for imperative programs using static analy-
ses. In this demo paper, we demonstrate the implementation and
usage of Dynaplex, a dynamic analysis tool that computes the
asymptotic runtime complexity of recursive programs. Dynaplex
infers recurrence relations from execution traces and solve them
for a closed-form complexity bound. Experimental results show
that Dynaplex can infer a wide range of complexity bounds (eg:
logarithmic, polynomial, exponential, non-polynomial) with great
precision (eg: 𝑂 (𝑛log2 3) for karatsuba). A video demonstration of
Dynaplex usage is available at https://youtu.be/t7dhwZ7fbVs

CCS CONCEPTS
• Software and its engineering→ Software testing and debug-
ging; • Security and privacy→ Software security engineering.
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1 INTRODUCTION
Program invariants describe properties that always hold at a pro-
gram location. Invariants are useful in many programming tasks
including verification, documentation, testing, debugging and code
generation. One of the benefits of automated invariant discovery is
that they help characterize program runtime complexity [14]. Run-
time complexity analysis is topic of both theoretical and practical
interest. First, hard real-time systems may require some guaran-
tees about their worst-case behaviour. Second, worst-case runtime
bounds are can help in early detection of eggregious performance
issues. Third, manual runtime complexity analysis can require a lot
of mathematical ingenuity from developers.
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Given the importance of computing runtime complexity bounds,
researchers have studied the problem in different ways. Dynamic
analysis aproaches [13, 14] compute nonlinear numerical invariants
from which complexity bounds can be inferred. Several static analy-
ses techniques have been developed for resource analysis. Hofmann
and Jost [8] predict time and space usage of functional programs
by extending their type systems to prove these resource bounds.
SPEED [5, 6] uses abstract interpretation to compute non-linear
bounds. The NPWCARP [3] uses ranking functions and invariant
templates; ICRA [11] uses recurrence-based invariant generation
whereas CHORA [2] combines both template-based and recurrence-
based techniques to compute runtime complexity bounds.

While existing runtime complexity analysis techniques are use-
ful, they have limitations. In general, static analyses can reason
about all program paths soundly, but doing so is often expensive
and is only possible for a restricted class of programs. For example,
NPWCARP analyzes cost models instead of the original source code.
The polynomial invariant discovered by SymInfer [14], a dynamic
invariant generator, are too strict to capture the complexity of most
programs. Several works focus on analyzing loops therefore there is
less emphasis on recursive program as reflected in the Termination
Competition [17] where all programs are recursion-free.

Inspired by dynamic invariant generation, in [9] we developed
Dynaplex, a new dynamic inference technique and tool for learning
recurrence relations (or simply recurrences) to capture the asymp-
totic complexity bounds of recursive programs. Briefly, a recurrence
defines the complexity to solve a problem in terms of the work
to solve its subproblems [4]. Dynaplex learns the relationship be-
tween a problem size and its subproblems to compute recurrences.
Moreover, Dynaplex solves recurrences using pattern-matching
techniques to obtain a closed-form solution that describes the as-
ymptotic complexity.

The Dynaplex approach has several benefits. By using dynamic
analysis, Dynaplex is language-agnostic and supports complex pro-
grams semantics that might be difficult for static analyses. By con-
sidering only program runs over a small number of randomly gen-
erated inputs, Dynaplex efficiently learns divide-and-conquer and
linear recurrences. By using linear recurrences, Dynaplex can com-
pute simple linear terms (over input size) to describe non-trivial
complexity bounds such as logarithmic and exponential. Finally, by
using pattern matching techniques optimized for common recur-
rences, Dynaplex quickly identifies correct worst-case complexity
bounds for non-trivial recursive programs.

The envisioned users for Dynaplex include users and develop-
ers of perfomance profiling tools as well as runtime complexity
researchers. Students learning Big-O complexity analysis can also
benefit from Dynaplex and its approach. It simplifies the complex
manual process involved in asymptotic complexity analysis. The
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Figure 1: Dynaplex overview

source code and benchmark programs of Dynaplex are publicly
available at [10]. The full details of Dynaplex approach are avail-
able in the research paper [9]. In this tool paper, we present more
in-depth technical details about the design, implementation and
usage of Dynaplex.

2 DYNAPLEX
Dynaplex is a command-line tool which computes the recurrence
relation and complexity bound of a recursive program. Figure 1
shows the workflow of Dynaplex, which is divided in three phases:

• trace collection: Dynaplex relies on the user to instrument
the method under analysis to capture program execution
traces at runtime.

• inferring recurrences: by analyzing the execution traces,
Dynaplex computes the recursive terms as well as the poly-
nomial term of a programs recurrence.

• solving recurrences: Dynaplex generates linear recurrences
as well as divide-and-conquer recurrences which can be
solved by pattern matching techniques such as Master The-
orem.

Figure 2 shows a running example of Dynaplex computing the
complexity of karatsuba programs. This program implements an
efficient multiplication algorithm for two n-digits integers using
single digit multiplication [? ]. Figure 2 shows an instrumented
version of karatsuba program to collect the execution traces. It
also shows the execution trace tree produced by running karatsuba
multiplication on two 5-digit integers. The following subsections
describe the three phases in detail using karatsuba program as an
example.

2.1 Trace Collection
Instrumentation:

Dynaplex relies on manual instrumentation to collect execution
traces. Users manually instrument a function under analysis to
collect the depth of recursion, problem size and the number of
loop iterations per recursive step. Figure 3 shows an example
of bubblesort program with instrumentation added (in red). The
trace function added at the function entry tracks the problem size
n and depth of recursion id. The variable k was added to track the
number of loop iterations. Dynaplex only needs the number of loop
iterations in the first recursive call (𝑖𝑑 == 0).

Traces: In the karatsuba example, Figure 2 shows the execu-
tion trace tree where each node corresponds to a recursive call, its
depth represent the corresponding depth of recursion and its value
represents the corresponding problem size. Since manual instru-
mentation can be tedious, Dynaplex is equipped with a C++ library
to help automate the process for C++ programs.

The execution traces are collected by running the instrumented
program on randomly generated inputs. Random inputs are suf-
ficient to compute the complexity of several recursive programs.
However, users can generate better quality of input using patho-
logical input fuzzers such as Perfuzz [12].

2.2 Inferring Recurrences
A recurrence relation is a recursive description of a function in
terms of itself. Most recurrences can be divided into two compo-
nents: the recursive terms and non-recursive terms. Dynaplex com-
putes both components of a recurrence from the traces collected.

Inferring recursive terms: Dynaplex learns the recursive terms
of karatsuba’s recurrence by learning the ratio between each
node and its child nodes. From the tree in Figure 2, Dynaplex infers
that karatsuba function makes 3 recursive calls as each node have
three child nodes. Dynaplex computes the first recursive term of
karatsuba’s recurrence by learning the ratio between each node
and its first (rightmost) child node. Dynaplex learns the relation
𝑡1 = 1

2 𝑡0 between each node 𝑡0 and its first child node 𝑡1 from the
data [(5, 3), (3, 2), (2, 1), (3, 2), (2, 1), (2, 1)].

Similarly, Dynaplex learns the ratio between each node and
its second (middle) and third (leftmost) child nodes to be 𝑡1 = 1

2 𝑡0.
Dynaplex relies on regression to compute the recursive terms there-
fore, it requires more traces (i.e. bigger trace trees) than shown
in Figure 2. Running karatsuba on 13-digit integers would pro-
duce sufficient traces for Dynaplex to infer karatsuba’s recurrence.
However, the trace tree produced would be too big to fit in Figure
2.

Inferring non-recursive term: the non-recursive term of the
recurrence corresponds to the work than outside of recursive calls.
For instance, the work than by the merging of results in mergesort
program. Dynaplex learns the non-recursive term using polyno-
mial regression between the problem size (𝑛) and the number
of loop iterations (𝑘) per recursive step. Using polynomial re-
gression, Dynaplex can also learn non-polynomial terms such as
𝑡 = log𝑛. For instance, a linear relation between 𝑘 and 𝑡 implies a
logarithmic relation between 𝑘 and 𝑛 (i.e. 𝑘 = 𝑐𝑡 =⇒ 𝑘 = 𝑐 log𝑛).
The karatsuba program in Figure 2 doesn’t have loop; therefore
Dynaplex learns that the work done outside the three recursive call
is constant thus the non-recursive term is 1.

2.3 Solving Recurrences
Dynaplex combines the recursive and non-recursive terms into one
recurrence relation which is then solved using pattern matching ap-
praoch from [9]. For instance, usingMaster Theorem, Dynaplex can
map divide-and-conquer recurrences of the form 𝑇 (𝑛) = 𝑎𝑇 ( 𝑛

𝑏
) +

𝑓 (𝑛) to their corresponding complexity bounds. There are more
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def karatsuba(x, y, id):
trace(len(str(x)), id)
if len(str(x)) == 1 or len(str(y)) == 1:

return x*y

else:

n = max(len(str(x)),len(str(y)))

nby2 = 10**(n / 2)

a = int(x / nby2)

b = int(x % nby2)

c = int(y / nby2)

d = int(y % nby2)

ac = karatsuba(a, c, id++)
bd = karatsuba(b, d, id++)
ad_bc = karatsuba(a+b, c+d, id++)
ad_bc = ac - bd

prod = ac * (nby2 **2) + ad_bc * nby2 + bd

return prod

Figure 2: A karatsuba program and its execution traces.

def bubblesort(arr , n, id):
trace(n, id)
if n==1:

return arr

for i in range(n-1):

if arr[i]>arr[i+1]:

arr[i], arr[i+1] = arr[i+1], arr[i]

if id == 0:

k++
bubble_sort(arr , n-1, id++)
return

Figure 3: Instrumented bubblesort program

general recurrence solving technique (ex: Akra-Bazzi [1]); how-
ever, Dynaplex can solve divide-and-conquer and other linear re-
currences instantaneously and soundly using the aforementioned
pattern matching.

In our running example, Dynaplex combines the results from
the above subsection to form the recurrence of karatsuba program
𝑇 (𝑛) = 3𝑇 ( 𝑛2 ) + 1. Dynaplex applies Master theorem to compute
the complexity bound 𝑂 (𝑛log2 3) for karatsuba. Note that the use
of recurrences permit Dynaplex to compute non-polynomial com-
plexity 𝑛𝑟 where 𝑟 ∉ N (𝑙𝑜𝑔23 is irrational).

3 TOOL USAGE
3.1 Design
Dynaplex is implemented in Python and uses polynomial regres-
sion from numpy [7] to learn polynomial relations required to infer
recurrence relations. Dynaplex is designed to work with any pro-
gramming language as it performs the analysis on execution traces
instead of source code. Dynaplex can be configured by the user to
control how the tool works. These configuration settings, which
can be changed from the command-line or settings.py file, in-
clude: -maxdeg d (generate polynomial models up to degree d);

-nlog (generate logarithmic terms for non-recursive term of the
recurrence).

Dynaplex can be used as a command line tool for Unix based
operating systems that supports Docker (tested on Ubuntu 20.04
and Debian 10.7 with Docker 20.10.7). Users can try Dynaplex by
cloning its Github repository https://github.com/unsat/dynaplex
and installing dependencies as instructed by the README file in the
repository. An easier way to try Dynaplex is by following detailed
instructions for obtaining the artifact and running experiments
found in [10].

In summary, to get started with Dynaplex, users need to follow
three steps:

(1) docker pull unsatx/dynaplex:oopsla21 pull the up-to-
date a Docker image of Dynaplex

(2) docker run -it unsatx/dynaplex:oopsla21 run theDocker
container to access Dynaplex source code and pre-installed
dependencies

(3) run Dynaplex /dynaplex/analyzer.py -trace karatsuba/
analyzer on the traces to analyze. Traces are collected by
executing an instrumented program (karatsuba) to analyze.

Dynaplex uses naming convention to identify the type of traces
and perform proper analysis. For instance, the karatsuba folder
contain multiple files named output-<s>, where <s> is the origi-
nal problem size, containing traces about depth of recursion and
problem size. There is also a file named traces that contains prob-
lem size and loop iteration count. Dynaplex uses output-<s> to
infer recursive terms, and traces to infer non-recursive term of
the recurrence relation.

3.2 Dynaplex Output
Figure 4 shows the result of running Dynaplex on the karatsuba
program on an AMD Ryzen 16-core Debian Buster system with
32 GB of RAM. Dynaplex’s output is divided into three main parts
that reflects its architecture. First, Dynaplex computes the recursive
terms of recurrence relation: 𝑇 ( 𝑛2 ) for each recursive call in the

https://github.com/unsat/dynaplex
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# /dynaplex/analyzer.py -trace karatsuba/

Computing the recurrence relation terms

T(n/2)

T(n/2)

T(n/2)

Computing polynomial relation term

Command: /dynaplex/dig.py -trace karatsuba/traces -maxdeg 5

Polynomial relation: 1

Recurrence relation:

T(n) = T(n/2) + T(n/2) + T(n/2) + (n^0( logn )^0)

Solving the recurrence relation

Complexity is O(n^1.5849625007211563)

Analysis complete in 0.874 seconds

Figure 4: Running Dynaplex

karatsuba example. Second, it computes the non-recursive term of
the recurrences; 1 (constant) since karatsuba have no loops. Third,
it combines the results into a recurrence which is then solved to
output the complexity bound of karatsuba.

For recursive programs with non-constant non-recursive terms
such as the bubblesort example in Figure 3, Dynaplex computes
and outputs polynomial models before and after applying selection
heuristics (as described in [9]). We run Dynaplex on traces collected
by running bubblesort 100 times on random inputs of size 1− 500
with -maxdeg 2. Dynaplex outputs three models before heuristics:
𝑚0 = 232.5,𝑚1 = 0.9𝑛 − 4.5,𝑚2 = 9.8 ∗ 10−6𝑛2 + 0.9901𝑛 − 4.066. It
only keeps𝑚1 after applying heuristics. Since Dynaplex computes
asymptotic bounds it discards the coefficients of the polynomial
model and only keeps the highest order term of the model (𝑛).

4 EVALUATION
We evaluated Dynaplex on a benchmark of 37 programs. Although
these programs are small (≈ 100 LOC) classical recursive algorithms
(ex: Fibonacci), they contain non-trivial data structures and a wide
range of complexity bounds.

Our experimental evaluation showed that Dynaplex can infer
correct complexity bounds for 32/37 programs. Dynaplex is able
to compute a wide range of complexity including logarithimic,
polynomial and non-polynomial bounds. For instance, Dynaplex
computes the precise complexity of strassenmatrix multiplication
𝑂 (𝑛log2 7). This level of precisionwould not be possible in numerical
invariant-based approaches [3, 14] as log2 7 is an irrational degree.
Dynaplex failed to generate correct recurrences for five programs.
These programs either make recursive calls on a random fraction of
the problem size (ex: quicksort) or guard the recursive call with
a condition (ex: heapsort) resulting in inconsistent traces that
Dynaplex fails to analyze. Complete evaluation details are given
in [9].

Limitations: Dynaplex, or dynamic analysis tools in general,
does not guarantee the soundness of its results. Dynaplex analy-
sis depends on the quality of traces which can be insufficient as
explained in the above paragraph. Dynaplex can be improved by
integrating with static analyses to validate its candidate recurrence
relations and/or complexity bounds. Using pathological input in-
stead of random inputs can lead to better quality of traces and thus
improving Dynaplex’s output.

5 CONCLUSION
Wepresent the design, implementation details and usage of Dynaplex,
a dynamic analysis tool to analyze the asymptotic runtime com-
plexity of recursive programs. Dynaplex learns recurrence relations
describing recursive programs and solves them for a wide range of
asymptotic complexity bounds. Dynaplex is the first dynamic anal-
ysis technique for complexity analysis, opening a new research area.
In future work, we plan to integrate Dynaplex with static analysis
to validate its results. The source code of Dynaplex, its benchmark
programs, and experimental results are publicly available at [10].
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