
138

Dynaplex: Analyzing Program Complexity using Dynamically
Inferred Recurrence Relations
DIDIER ISHIMWE, University of Nebraska-Lincoln, USA

KIMHAO NGUYEN, University of Nebraska-Lincoln, USA

THANHVU NGUYEN, George Mason University, USA

Being able to detect program runtime complexity is useful in many tasks (e.g., checking expected performance

and identifying potential security vulnerabilities). In this work, we introduce a new dynamic approach for

inferring the asymptotic complexity bounds of recursive programs. From program execution traces, we learn

recurrence relations and solve them using pattern matching to obtain closed-form solutions representing the

complexity bounds of the program. This approach allows us to efficiently infer simple recurrence relations

that represent nontrivial, potentially nonlinear polynomial and non-polynomial, complexity bounds.

We present Dynaplex, a tool that implements these ideas to automatically generate recurrence relations

from execution traces. Our preliminary results on popular and challenging recursive programs show that

Dynaplex can learn precise relations capturing worst-case complexity bounds (e.g., 𝑂 (𝑛 lg𝑛) for mergesort,

𝑂 (2𝑛) for Tower of Hanoi and 𝑂 (𝑛1.58) for Karatsuba’s multiplication algorithm).

CCS Concepts: • Software and its engineering→ Dynamic analysis; Software verification; Software
performance.

Additional Key Words and Phrases: complexity analysis, program analysis, invariants, recurrence relations

ACM Reference Format:
Didier Ishimwe, KimHao Nguyen, and ThanhVu Nguyen. 2021. Dynaplex: Analyzing Program Complex-

ity using Dynamically Inferred Recurrence Relations. Proc. ACM Program. Lang. 5, OOPSLA, Article 138

(October 2021), 23 pages. https://doi.org/10.1145/3485515

1 INTRODUCTION
Program invariants describe properties that always hold at a program location. Examples of

invariants include pre/post-conditions, loop invariants, and assertions. Generated invariants are

useful in many programming tasks, including verification, documentation, testing, debugging, code

generation, and more [Ball and Rajamani 2001; Das et al. 2002; De Moura and Bjørner 2008; Ernst

2000; Henzinger et al. 2002; Leroy 2006].

The Syminfer work in [Nguyen et al. 2017b] uses dynamic analysis to infer nonlinear invariants

among numerical program variables from program execution traces (e.g., the quadratic equation

𝑥 = 𝑞𝑦 + 𝑟 over the variables 𝑥,𝑦, 𝑞, 𝑟). A rather surprising use of SymInfer’s invariants is that they

can help characterize program runtime complexity. This works by instrumenting a counter for the

number of blocks executed and inferring an equality relationship involving that counter and the

program’s input variables at the end of the program. For example, it can be shown this way that a

program runs in 𝑂 (𝑛2), where 𝑛 is a program input.

Authors’ addresses: Didier Ishimwe, ishimwed@huskers.unl.edu, University of Nebraska-Lincoln, USA; KimHao Nguyen,

kdnguyen@huskers.unl.edu, University of Nebraska-Lincoln, USA; ThanhVu Nguyen, tvn@gmu.edu, George Mason

University, USA.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.

Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires

prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2021 Association for Computing Machinery.

2475-1421/2021/10-ART138

https://doi.org/10.1145/3485515

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 138. Publication date: October 2021.

https://doi.org/10.1145/3485515
https://doi.org/10.1145/3485515

138:2 Ishimwe et al.

Indeed, runtime complexity is an interesting class of program properties, and the ability to

automatically discover it has many benefits. For example, we can determine if an implementation

of an existing algorithm exceeds the theoretical worst-case complexity and thus has a performance

bug [Song and Lu 2014]. We can also discover the complexity of a new implementation and attempt

to optimize it. Complexity analysis can also help detect several important security vulnerabilities,

e.g., exhausting the system’s resources or leaking side-channel information [Burnim et al. 2009;

Petsios et al. 2017].

While being interesting, SymInfer’s polynomial equalities are just too strict to capture the

complexity of most programs. For example, unless the value of the counter variable is exactly

equal to 𝑛2, Syminfer cannot compute the necessary equality to conclude that the program has a

quadratic complexity. Moreover, polynomial invariants cannot represent complexity bounds that

involve non-polynomial terms (e.g., logarithmic and exponential) that are common in asymptotic

complexity. Nonetheless, this work shows the effectiveness of dynamic invariant inference and the

potential uses of the inferred invariants. Indeed, another recent work applies dynamically inferred

numerical invariants to compute ranking functions and termination sets and use them to analyze

program termination and non-termination behaviors [Le et al. 2020].

Inspired by dynamic invariant generation, we propose Dynaplex, a new dynamic inference

technique and tool for learning recurrence relations (or simply recurrences) to capture the asymptotic

complexity bounds of recursive programs. Briefly, a recurrence defines the complexity to solve a

problem in terms of the work to solve its subproblems [Cormen et al. 2009]. Moreover, we can solve

the recurrence to obtain a closed-form solution that describes the asymptotic complexity.

At a high level, Dynaplex is a dynamic invariant generation tool that learns recurrences from

program traces. The tool supports two forms of recurrences that often appear in recursive programs:

divide-and-conquer recurrences such as 𝑇 (𝑛) = 2𝑇 (𝑛
2
) + 𝑛 for merge sort and linear recurrences

such as 𝑇 (𝑛) = 𝑇 (𝑛 − 2) +𝑇 (𝑛 − 1) + 1 for Fibonacci. Dynaplex analyzes program traces to infer

these recurrences and then applies the Master theorem and other pattern matching techniques to

map recurrences to different classes of complexity bounds.

Dynaplex differs from other complexity analyses (e.g., [Breck et al. 2020; Chatterjee et al. 2019;

Gulwani 2009]) in the use of a dynamic, instead of static or hybrid, analysis to discover asymptotic

complexity. By using dynamic analysis, Dynaplex is language agnostic and works with complex

programs (e.g., using non-trivial modulo and exponential operations) that might be difficult for

static analyses. By considering only program runs over a small number of randomly generated

inputs, Dynaplex efficiently learns divide-and-conquer and linear recurrences. Finally, by using

pattern matching techniques optimized for common recurrences, Dynaplex quickly identifies

correct worst-case complexity bounds for challenging programs.

We evaluated Dynaplex on 37 recursive programs in C++, Python, and OCaml with a wide range

of worst-case complexity bounds. We found that Dynaplex’s recurrences can capture nontrivial,

potentially nonlinear and even non-polynomial, complexity bounds, e.g.,𝑂 (𝑛lg2 7) for the Strassen
matrix multiplication algorithm. Even when analyzing traces obtained from running the programs

on randomly generated inputs, Dynaplex is efficient and effective in learning correct recurrences

and solving them for precise complexity bounds. Moreover, in a few cases Dynaplex was not able to

obtain the correct recurrences from traces but Dynaplex still can “recover” from these inaccuracies

and derive correct worst-case complexity results.

Contributions. In summary, this paper makes the following contributions:

• We introduce a new dynamic analysis technique for learning divide-and-conquer and linear

recurrences that appear in many recursive programs.

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 138. Publication date: October 2021.

Analyzing Program Complexity using Dynamically Inferred Recurrence Relations 138:3

def mergesort(L, id):
#id is a list , e.g., [1]

trace(len(L), id)

t = 0 #ctr variable

n = len(L)

if n == 0 or n == 1:

return copy(L)

mid = n // 2

id_ = id + [++t] # [1,1]

A = mergesort(L[0:mid], id_)

id_ = id + [++t] # [1,2]

B = mergesort(L[mid:n], id_)

C = merge(A, B, n)

return C

def merge(A, B, n):

t = 0 #ctr variable

a = 0; b = 0; C = []

while (a < len(A)

and b < len(B)):

t++
if A[a] <= B[b]:

C += [A[a]]; a++

else:

C += [B[b]]; b++

while a < len(A):

t++; C += [A[b]]

while b < len(B):

t++; C += [B[b]]

trace(t, n)

return C

7,
[1]3,

[1,1] 4,
[1,2]1,

[1,1,1] 2,
[1,1,2] 2,

[1,2,1] 2,
[1,2,2]

1,
[1,2,2,1] 1,

[1,2,2,2]

1,
[1,2,1,1] 1,

[1,2,1,2]

1,
[1,1,2,1] 1,

[1,1,2,2]

Fig. 2. A mergesort program and its execution tree.

• We develop a formal complexity bound analysis that directly maps recurrences to various

classes of program complexity.

• We implement these ideas in the Dynaplex tool and evaluate it on a set of 37 benchmark

programs written in multiple languages and having a wide range of complexity bounds. We

also compare Dynaplex with other 2 static analyses tools.

Dynaplex and all benchmark data are available at https://github.com/unsat/dynaplex and Zen-

odo [Ishimwe et al. 2021].

2 OVERVIEW

Inputs
Program

Execution

Learning
Recurrence

Learn
Polynomial

Model

Traces Solving
Recurrence

Runtime
Complexity

Program

Fig. 1. Dynaplex overview

Fig. 1 gives an overview of Dynaplex, which uses

dynamic analysis to infer recurrences to capture

the runtime complexity of recursive programs. Dy-

naplex takes as input program execution traces,

obtained by running an instrumented recursive pro-

gram on a set of inputs, and returns the asymptotic

complexity of that program.

First, Dynaplex analyzes the program traces to

compute a recurrence that defines the recursive

execution and a polynomial relation that defines

the non-recursive imperative execution. Next, Dy-

naplex combines the obtained relations into a recurrence defining the full program execution.

Finally, to solve the recurrence, Dynaplex applies a pattern matching technique that maps the

recurrence to a closed-form solution representing the program complexity.

2.1 Example
Fig. 2 shows an implementation of the classical merge sort algorithm, which sorts a list of

elements by recursively sorting half of the input list and merging the results together. The runtime

complexity of this program depends on the complexity of both the recursive function mergesort
and the non-recursive function merge, which Dynaplex analyzes as follows.

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 138. Publication date: October 2021.

https://github.com/unsat/dynaplex

138:4 Ishimwe et al.

Recurrence Relations. For the recursive mergesort function, Dynaplex computes a recurrence

relation (or simply recurrence), which describes the relationship between the sizes of the inputs of

the function and its recursive calls, from program execution traces. To obtain program traces, we

instrument the program to introduce the new variables id and t to keep track of the recursive calls

as shown in Fig. 2. We use the trace function to record the recursive call id and its input size as

program traces.

We then run mergesort on randomly generated inputs of various sizes and collect the program

execution traces, represented as an execution tree. For example, the tree in Fig. 2 shows the program

traces when applying mergesort to a list of 7 elements. The root node (7, [1]) is the first mergesort
call with id [1] on the list of 7 elements. The first child node (3, [1, 1]) represents the first recursive
call with id [1,1] on the first three elements of the original list. Similarly, the second child node

(4, [1, 2]) represents the second recursive calls with id id [1,2] on the remaining four elements of

the original list.

From this execution tree, Dynaplex forms tuples of the form (𝑡0, 𝑡1), where 𝑡0 and 𝑡1 are the sizes
of the original problem and the subproblems, respectively. Dynaplex next applies linear regression

to learn a model of the form 𝑡1 = 𝑐𝑡0, which represents the relation between the sizes of the original

problem and the first subproblem. For example, Dynaplex learns the model 𝑡1 =
1

2
𝑡0 from the data

(7, 3), (3, 1), (2, 1), (4, 2) in the execution tree in Fig. 2.

Similarly, Dynaplex infers 𝑡2 =
1

2
𝑡0 as the relation between mergesort and its second recursive

call (subproblem). The combination of these two relations gives the relation 𝑇 (𝑛) = 𝑇 (𝑛
2
) +𝑇 (𝑛

2
),

indicating that mergesort makes two recursive calls over inputs that are approximately half of the

original input of size 𝑛.

Polynomial Relations. For the non-recursive merge function, which combines the results of the

recursive calls, Dynaplex computes a polynomial relation to capture its runtime complexity with

respect to the input of mergesort (not the input of merge itself). To achieve this, we instrument

merge to take another input 𝑛 representing the size of the input of the mergesort caller as shown

in Fig. 2. We also create a the counter variable 𝑘 in merge and increment 𝑘 in each loop to count

the number of executed instructions as shown in Fig. 2. Thus, when running mergesort on various

inputs to collect traces, we also obtain the execution traces for merge.
Dynaplex next applies regression to learn a polynomial model fitting the trace data to represent

the complexity of merge. For this example, the obtained model indicates 𝑘 is linear in the input

size 𝑛 of the mergesort caller, i.e., the complexity bound of merge is 𝑂 (𝑛).

Solving Recurrences. Dynaplex combines the recursive and non-recursive results to obtain𝑇 (𝑛) =
2𝑇 (𝑛

2
) +𝑂 (𝑛) as the recurrence for mergesort. Finally, the tool applies a pattern matching approach

on the recurrence to obtain a closed-form solution representing an asymptotic complexity bound.

For example, Dynaplex computes O(n log n) as the complexity of the obtained recurrence and

therefore of the mergesort implementation in Fig. 2.

2.2 Dynamic Inference
Dynaplex is essentially a dynamic invariant generation technique and tool that focuses on discover-

ing recurrence and polynomial relations to represent program complexity. Such a dynamic analysis

technique typically infers program invariants under certain forms or templates from program

execution traces, observed from running a program on a sample of concrete inputs.

Dynamically inferred invariants are shown to be practical and useful by the Daikon work [Ernst

et al. 2007], and recently have been used to aid complex static analyses, e.g., proving program

correctness using nonlinear invariants [Nguyen et al. 2017b; Yao et al. 2020], reasoning about

program termination and non-termination properties by inferring ranking functions and recurrent

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 138. Publication date: October 2021.

Analyzing Program Complexity using Dynamically Inferred Recurrence Relations 138:5

sets [Le et al. 2020], and analyzing heap programs with dynamically inferred invariants in separation

logic [Le et al. 2019]. In contrast to these works, Dynaplex focuses on learning recurrences to

analyze the runtime complexity of recursive programs.

Recurrence Relations. A recurrence relation is a recursive description of a function in terms of itself.

In many cases, we can naturally express the running time of an algorithm as a recurrence, where

the recursive cases of the recurrence correspond to the recursive cases of the algorithm [Erickson

2013]. For example, the recurrence 𝑇 (𝑛) = 2𝑇 (𝑛
2
) + 𝑛 of mergesort in Fig. 2 defines the work of

sorting n elements in terms of the work of sorting two sublists of
𝑛
2
elements and merging the

results. In this work, we focus on two popular forms of recurrences: divide-and-conquer recurrences
such as the recurrence of mergesort and linear recurrence such as 𝑇 (𝑛) = 𝑇 (𝑛 − 2) +𝑇 (𝑛 − 1) + 1
of fibonacci.

By itself, a recurrence does not produce the program complexity. Thus, after learning a recurrence,

we need to solve it to obtain a closed-form solution, which is a non-recursive description of the

program. We develop pattern-matching techniques that efficiently map various forms of divide-and-

conquer and linear recurrences to different complexity classes. An advantage of using recurrences

is that even simple recurrences, which can be inferred efficiently, can be solved to obtain expressive

complexity classes involving logarithmic and exponential terms. For example, the solution of

𝑇 (𝑛) = 2𝑇 (𝑛
2
) + 𝑛 of mergesort is 𝑂 (𝑛 log𝑛), the solution of 𝑇 (𝑛) = 𝑇 (𝑛 − 2) + 𝑇 (𝑛 − 1) + 1 of

fibonacci is 𝑂 (2𝑛), and the solution of 𝑇 (𝑛) = 7𝑇 (𝑛
2
) + 𝑛2 of the matrix multiplication algorithm

Strassen is 𝑂 (𝑛lg2 7).

Inputs and Result Quality. Dynaplex can efficiently discover recurrence and polynomial relations

by analyzing traces generated by running the program on a small set of inputs. However, just as

with other data-driven dynamic analyses, Dynaplex can produce spurious results depending on the

quality of the inputs. For example, randomly generated inputs might not help find the worst-case

complexity of a program if such a complexity can only be observed when the program runs under

certain inputs. We discuss more about this soudness issue in §5.4.

Finding such worst-case inputs is a challenging problem of its own, and there are many promising

research on automatically generating them (e.g., [Lemieux et al. 2018; Petsios et al. 2017]). In this

work, we do not attempt to generate worst-case inputs, but instead focus on the problem of inferring

program complexity from traces generated from given inputs.

Even with just randomly generated inputs, our evaluation in §5 shows that Dynaplex can still

infer precise recurrences and capture correct worst-case program complexity. This is encouraging

because in many cases we can just use cheap randomly generated inputs instead of having to rely

on more expensive WCET inputs. Interestingly, in some cases, we obtained inaccurate recurrences

from traces but our technique for solving them was able to recover from these inaccuracies and

produce correct complexity bounds.

3 INFERRING RECURRENCES
Dynaplex infers recurrences to capture the asymptotic time complexity of recursive programs (or

functions). We use the standard definition of asymptotic complexity, which describes the growth

of the program runtime as its inputs get larger. As shown in §2.1, simple recurrences can capture

expressive complexity bounds such as those involving logarithmic or nonlinear information. Dy-

naplex uses dynamic analysis to efficiently learn such recurrences from program traces and solve

them to obtain expressive complexity bounds (described in §4).

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 138. Publication date: October 2021.

138:6 Ishimwe et al.

input :program execution traces

output :a recurrence of the form in Eq 1

1 tree← get_exe_tree(traces)
2 valss← []
3 foreach node 𝑓 ∈ tree do
4 foreach 𝑖, 𝑔 ∈ enumerate(get_children(𝑛)) do
5 if |valss| ≤ 𝑖 + 1 then valss.append(∅)
6 valss[𝑖] ← valss[𝑖] ∪ {(𝑓 .val, 𝑔.val)}

7 vals← ∅
8 foreach 𝑖 ∈ enumerate(|valss|) do
9 val← compute_ratio(valss[𝑖])

10 if val = null then return null
11 vals← vals ∪ {val}

12 fn← compute_poly(traces)
13 rec← combine(vals, fn) // 𝑇 (𝑛) = 𝑇 (𝑛𝑐1) + · · · +𝑇 (

𝑛
𝑐𝑘
) + 𝑓 (𝑛)

14 return rec

Fig. 3. Learning recurrences from program execution traces.

3.1 Learning Recurrence Relations
We support two forms of recurrences:

𝑇 (𝑛) = 𝑇

(
𝑛

𝑏1

)
+ · · · +𝑇

(
𝑛

𝑏𝑎

)
+ 𝑓 (𝑛) (1)

𝑇 (𝑛) = 𝑇 (𝑛 − 𝑑1) + · · · +𝑇 (𝑛 − 𝑑𝑎) + 𝑓 (𝑛) (2)

Here 𝑛 is the size of the input, 𝑎 the number of subproblems in the recursion, 𝑏𝑖 the factor and 𝑑𝑖
the difference by which the size of the 𝑖𝑡ℎ subproblem is reduced in each recursive calls, and 𝑓 (𝑛)
is the work done outside of the recursive call (e.g., the cost of dividing the problem and merging

the results in a divide-and-conquer algorithm). Also, 𝑎, 𝑏𝑖 , 𝑑𝑖 are natural numbers, 𝑎 ≥ 1, 𝑏𝑖 > 1,

𝑑𝑖 ≥ 1, and 𝑓 (𝑛) is ≥ 1 and monotonically non-decreasing (i.e., 𝑓 (𝑛 + 1) ≥ 𝑓 (𝑛)).
We focus on these two forms of recurrence because they are sufficiently expressive to represent the

complexity of many recursive programs. The first form represents divide-and-conquer recurrences
defining recursive programswith subproblems that are some constant factors of the original problem.

These recurrences can be solved to obtain complexity bounds such as 𝑂 (lg𝑛),𝑂 (𝑛 lg𝑛), and 𝑂 (𝑛𝑐).
The second form represents linear recurrences defining recursive programs with subproblems that

are smaller than the original problem by some constant values. These recurrences can be solved to

obtain exponential complexity bounds such as 𝑂 (2𝑛).

3.1.1 Divide-and-Conquer Recurrences. Fig. 3 shows the algorithm to infer divide-and-conquer

recurrences of the form in Eq 1. In §3.1.2, we reuse this algorithm to infer linear recurrences of the

form in Eq 2.

Collecting Input Sizes. We start by extracting an execution tree from the input traces (line 1).

This tree represents the recursive calls of the program: a non-leaf node contains the size of the

input to a caller function and the children nodes contain the sizes of the inputs to the recursive

calls of that function. For example, Fig. 2 shows an execution tree representing the execution of

mergesort on a list of 7 elements.

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 138. Publication date: October 2021.

Analyzing Program Complexity using Dynamically Inferred Recurrence Relations 138:7

We next traverse the execution tree and collect the size of the input problem of each function

call 𝑓 and the sizes of the input subproblems of the recursive calls of 𝑓 , to the values list valss
(lines 3-6). The example in Fig. 2 has valss = [[(7,3), (3, 1), (2,1), (4,2), (2,1), (2,1)]; [(7,4),(4,2), (2,1),

(2,1), (3,2), (2,1)]].

Computing Ratios. From each 𝑖th value sublist valss[i] we compute the ratio between the

problem of the function call 𝑓 and the subproblem of the recursive call 𝑔𝑖 of 𝑓 (lines 8-11). This

ratio value represents the factor 𝑏𝑖 in the term 𝑇 (𝑛
𝑏𝑖
) in Eq 1. For example, for valss[0]=[(7,3), (3,

1), (2,1), (4,2), (2,1), (2,1)], the computed ratio is approximately 2, indicating the subproblem of the

first recursive call of mergesort is about a half of the original input problem of mergesort.
Dynaplex then uses linear regression to compute a model 𝑥 = 𝑐 · 𝑦 from a list of (𝑥 ,𝑦) tuples,

where the coefficient 𝑐 represents the ratio of 𝑥 to 𝑦. Regression also produces an r-squared value

representing how well the computed model fits the given data (r-squared value that is close to 1.0

is better). If the computed model has a low r-squared value, the algorithm cannot determine a clear

relationship between 𝑥 and 𝑦 and stops (line 10).

For the current example with just 7 data points, we obtain 2.6 for the coefficient with a low

r-squared value (close to 0.0). However, when running mergesort with larger inputs such as lists

of 100 elements, we have more trace data and obtain 2.2, which we round to 2, for the coefficient

with a high r-squared value (close to 1.0).

Forming Recurrences. Divide-and-conquer algorithms often consist of non-recursive components

that analyze and combine subproblem results (e.g., the merge function in mergesort). Thus, we
need to infer the runtime complexity fn of the imperative code (line 12). This technique, described

in §3.2, analyzes program traces to learn polynomial models representing the runtime complexity

of imperative programs and functions. For example, we infer 𝑂 (𝑛) as the complexity of merge.
Finally, we combine the computed coefficients 𝑐𝑖 and complexity fn to form a recurrence of the

form in Eq 1. For mergesort, we obtain𝑇 (𝑛) = 𝑇 (𝑛
2
) +𝑇 (𝑛

2
) +𝑂 (𝑛), corresponding to the recursive

structure of mergesort: it makes two recursive calls, each with half the size of the original input

and the merge operation takes linear time. In §4 we describe how to solve recurrences to obtain

program complexity bounds.

3.1.2 Linear Recurrences. If Dynaplex cannot find a divide-and-conquer recurrence of the form in

Eq 1, it next attempts to find a linear recurrence of the form in Eq 2, i.e., 𝑇 (𝑛) = 𝑇 (𝑛 − 𝑑1) + · · · +
𝑇 (𝑛−𝑑𝑎) + 𝑓 (𝑛). These recurrences define recursive programs whose subproblems are smaller than

the original problems by some constant values 𝑑𝑖 . For example, the computation of fibonacci
numbers has a linear recurrence 𝑇 (𝑛) = 𝑇 (𝑛 − 1) +𝑇 (𝑛 − 2) + 1.

To infer linear recurrences, we reuse the algorithm shown in Fig. 3 and described in §3.1.1. The

main difference is that we compute the difference 𝑥 − 𝑦 instead of the ratio
𝑥
𝑦
for each subproblem

(line 9). Specifically, for each sublist valss[i] of (𝑥,𝑦) tuples, we obtain a list of difference values

𝑥 − 𝑦. From this list, we then select a representative value that occurs most frequently. By default

Dynaplex sets this frequency parameter to be 95%, i.e., if 95% of the computed differences of a

subproblem 𝑖 is 𝑑𝑖 , then 𝑑𝑖 is the representative difference value (i.e., the 𝑑𝑖 in the term 𝑇 (𝑛 − 𝑑𝑖) of
the recurrence). Finally, the algorithm proceeds to find the complexity fn as described and combine

it with the differences 𝑑𝑖 to form a recurrence of the form 𝑇 (𝑛) = 𝑇 (𝑛 − 𝑑0) + · · · + 𝑓 (𝑛) in Eq 2.

For the mergesort example with 7 data points, we obtain the difference list [4, 2, 1, 1, 1, 1] from
valss[0] = [(7, 3), (3, 1), (2, 1), (4, 2), (2, 1), (2, 1)]. However, we could not select a representative

difference value because 1, the most frequently occurred value, only occurs 4/6 times. Even when

running mergesort on larger inputs to obtain more traces, we would not be able to find any

difference value for any subproblem. The reason is because mergesort only has the recurrence

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 138. Publication date: October 2021.

138:8 Ishimwe et al.

𝑇 (𝑛) = 2𝑇 (𝑛
2
) +𝑂 (𝑛) of the form in Eq 1 as shown above and does not have linear recurrences of

the form in Eq 2. In general, most recursive programs only have one of these forms but not both.

3.2 Learning Polynomial Relations
Dynaplex uses a dynamic analysis to infer polynomial relations, which represent the runtime

complexity of a non-recursive functions or programs from execution traces. This allows us to

compute the complexity of the combination or “conquer” step in divide-and-conquer algorithms,

e.g., the 𝑓 (𝑛) part of the recurrences.
First, to obtain traces, we instrument the considered function to capture the number of executed

statements by creating a counter variable 𝑘 and incrementing it in each loop in the function. We also

capture the size of the original input problem to the program (not necessarily the input problem to

the considered function) as our goal is to determine the complexity of the function with respect to

the original problem. For example, as shown in Fig. 2 we instrument the function merge to collect

𝑘 , which represents the numbers of executed statements in merge, and 𝑛, the size of the input list
of mergesort. We note that counter instrumentation is common in many static program analyses

(e.g., [Breck et al. 2020; Gulwani 2009; Gulwani et al. 2009b; Hoffmann et al. 2011; Hoffmann and

Hofmann 2010; Le et al. 2020; Nguyen et al. 2017b]). We further discuss automating instrumentation

and additional ideas to avoid insrumentation errors in §5.4.

From the obtained traces we use polynomial regression to learn amodel capturing the relationship

between 𝑘 and 𝑛. Dynaplex uses the regression implementation in numpy, which supports nonlinear

models by creating nonlinear terms up to a maximum degree value Δ (e.g., 𝑡1 = 𝑛, 𝑡2 = 𝑛2, . . . , 𝑡Δ =

𝑛Δ) and then finding a linear model over these nonlinear terms (e.g., 𝑘 = 𝑡2+5𝑡1 indicates 𝑘 = 𝑛2−5𝑛).
Thus, we learn linear models of the form

𝑘 = 𝑐0𝑡0 + 𝑐1𝑡1 + · · · + 𝑐Δ𝑡Δ + 𝑑, (3)

where 𝑡𝑖 are terms and 𝑐𝑖 , 𝑑 are real-valued coefficients.

Dynaplex uses a parameter Δ to indicate the maximum degree that it would consider (by default

Dynaplex sets Δ = 5). Also, if the user hypothesizes that the complexity might involve other

nonlinear values, e.g., lg,
√
, 2𝑛, · · · , they can specify additional terms to represent those values

for Dynaplex to consider. By default, Dynaplex automatically includes terms representing lg

and 𝑛 lg𝑛 as they are common program complexity. We note that existing invariant generation

techniques [Le et al. 2020; Nguyen et al. 2012] also use this idea of creating terms representing

interesting information and find relations among terms.

Selecting Models. A regression technique often produces multiple different models on the same

set of data. The technique also assigns each computed model an r-squared value to indicate how

fit that model is with respect to the data. In many cases, however, models with high r-squared

values, while fitting the given data well, do not generalize to unseen data and are thus spurious. For

example, the model 𝑘 = −5.36𝑒−21𝑛3 + 0.5𝑛2 − 0.5𝑛 does not likely indicate that 𝑘 = 𝑂 (𝑛3) because
𝑛3 is associated with a negligible coefficient −5.36𝑒−21.

To avoid potentially spurious models, Dynaplex uses a simple heuristic that considers both

r-squared values and term coefficients. First, we discard models with low r-squared values because

such models do not fit the given data well. We also discard models that have the highest degree

terms associated with coefficients that are close to 0. Finally, among the remaining models, we

select the one with the highest r-squared value. Note that this heuristics does not always produce

the best models, however, it is easy to implement and works well in practice. Moreover, in several

cases shown in §5, even if we select the incorrect models (either due to the heuristics or poor

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 138. Publication date: October 2021.

Analyzing Program Complexity using Dynamically Inferred Recurrence Relations 138:9

quality trace data), the technique to solve the combined recurrence described in §4 can still derive

the correct asymptotic complexity solutions.

Note that we can also compute polynomial relations to directly capture the complexity of a

recursive program. However, a recurrence resembles the structure of a recursive program and thus

can represent the program complexity more precisely (e.g., recurrences can capture logarithmic

and exponential information such as lg
3
𝑛, 𝑛lg2 7). We would not be able to achieve such complexity

using polynomial relations unless we know a priori that the result would involve such information

and thus manually specify terms representing them (e.g., 𝑡 = 𝑛lg2 7).

4 SOLVING RECURRENCES
By itself, a recurrence does not reveal the asymptotic complexity of a program. For example, we

cannot tell that mergesort runs in 𝑂 (𝑛 lg𝑛) from its recurrence 𝑇 (𝑛) = 2𝑇 (𝑛
2
) + 𝑛 or that fibonacci

has an exponential complexity from 𝑇 (𝑛) = 𝑇 (𝑛 − 1) +𝑇 (𝑛 − 2) + 1.
To obtain asymptotic complexity, we need to solve the recurrence to obtain a closed-form solution—

a non-recursive description of a program that satisfies the recurrence. However, solving an arbitrary

recurrence is in general difficult. For example, in the guess-and-check method [Erickson 2013], we

guess the solution and use induction to show that solution is correct. While this method works for

many forms of recurrences, it requires the user to manually provide good guesses.

Recurrence trees [Cormen et al. 2009; Erickson 2013] is a common method of guessing the closed

form of a recurrence. In this method, we represent the recurrence as a tree and compute the total

cost of all nodes in the tree to a closed-form solution. For example, the tree for the recurrence

𝑇 (𝑛) = 2𝑇 (𝑛
2
) + 𝑛 of mergesort consists of a root node at level 𝑖 = 0 having the cost 𝑛 and each

node at level 𝑖 ≥ 1 having the cost
𝑛
2
𝑖 (each child of a non-leaf node with a cost𝑚 has the cost

𝑚
2
). Moreover, at each level 𝑖 the tree has 2𝑖 nodes and thus the cost 2

𝑖 · 𝑛
2
𝑖 = 𝑛. Finally, since the

tree has lg𝑛 levels (input 𝑛 is halved each time), the total cost is then 𝑛 · lg𝑛, corresponding to the

complexity 𝑂 (𝑛 lg𝑛).
Below, we use recurrence trees to develop the complexity bounds for various forms of divide-

and-conquer and linear recurrences. Dynaplex implements these results in a pattern-matching

method that maps inferred recurrences to different classes of complexity bounds.

4.1 Solving Divide-and-Conquer Recurrences
We use the well-known Master theorem to obtain the complexity bounds of a specific variant of

divide-and-conquer algorithm and overapproximation to obtain the upper complexity bounds of

general divide-and-conquer recurrences.

4.1.1 Master Theorem. Many divide-and-conquer algorithms have similar subproblem sizes and

therefore can be defined using a specific variant of the recurrence of form in Eq 1 in which the

factors 𝑏𝑖 are the same. Recurrences of this form can be solved using the Master theorem, which is

a popular “cookbook” technique that maps specific forms of divide-and-conquer recurrences to

different classes of complexity.

Theorem 4.1. The Master theorem [Cormen et al. 2009; Erickson 2013] defines the solutions repre-
senting the tight (Θ) complexity bounds for recurrences of the form

𝑇 (𝑛) = 𝑎𝑇

(𝑛
𝑏

)
+ 𝑓 (𝑛). (4)

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 138. Publication date: October 2021.

138:10 Ishimwe et al.

The technique consists of three cases based on the relationships between the cost of solving the subprob-
lems (defined as the critical component 𝑐 = log𝑏 𝑎) and the cost of 𝑓 (𝑛):

complexity =


Θ(𝑛𝑐) when 𝑓 (𝑛) = 𝑂 (𝑛𝑐) ∧ 𝑐 < 𝑐

Θ(𝑓 (𝑛) when 𝑓 (𝑛) = Ω(𝑛𝑐) ∧ 𝑐 > 𝑐

Θ(𝑛𝑐 lg𝑛) when 𝑓 (𝑛) = Θ(𝑛𝑐) ∧ 𝑐 = 𝑐

Proof. In the first case, if the cost of solving the subproblems at each tree level increases by

a constant factor, then the value of 𝑓 (𝑛) becomes polynomially smaller than 𝑛𝑐 and thus the

complexity is dominated by the cost of the last level, i.e., 𝑛𝑐 . In the second case, if the cost of

solving the subproblems at each level decreases by a constant factor, the value of 𝑓 (𝑛) becomes

polynomially larger than 𝑛𝑐 and thus the complexity is dominated by the cost of 𝑓 (𝑛). In the

last case, if the cost of solving the subproblem at each level is nearly equal, the value of 𝑓 (𝑛) is
comparable to 𝑛𝑐 and thus the complexity is the product of 𝑓 (𝑛) and the number of levels in the

recurrence tree, i.e., 𝑛𝑐 lg𝑛. □

Using these three cases, Dynaplex implements a pattern matching technique that recognizes

recurrences of the form in Eq 4, computes the values of 𝑐 and 𝑐 , and compares them to determine

the proper case and the corresponding program complexity. For example, Dynaplex maps the

recurrence (i) 𝑇 (𝑛) = 8𝑇 (𝑛
2
) + 1000𝑛2 to Θ(𝑛3) because 𝑐 = 2 is less than 𝑐 = log

2
8 = 3 (1st case);

(ii) 𝑇 (𝑛) = 2𝑇 (𝑛
2
) + 𝑛2 to Θ(𝑛2) because 𝑐 = 2 is greater than 𝑐 = log

2
2 = 1 (2nd case); and (iii) the

recurrence of mergesort to Θ(𝑛 lg𝑛) because 𝑐 = 1 is equal to 𝑐 = log
2
2 = 1 (3rd case).

While this Master Theorem-based technique is relatively simple, it allows us to obtain a wide

range of complexity bounds, some of which are complex and involve non-polynomial terms. For

example, as discussed in §5 Dynaplex got the complexity 𝑂 (𝑛lg2 3) = 𝑂 (𝑛1.58) from the recurrence

𝑇 (𝑛) = 3𝑇 (𝑛
2
) + 1 of the Karatsuba algorithm (1st case of the Master Theorem).

Moreover, the technique is tolerant to certain imprecisions during the learning process (e.g.,

due to insufficient traces). For example, instead of the recurrence 𝑇 (𝑛) = 2𝑇 (𝑛
2
) + 𝑛2, we could

inaccurately infer 𝑇 (𝑛) = 2𝑇 (𝑛
3
) + 𝑛2, but still obtain the correct complexity Θ(𝑛2) because both

recurrences fall under the 1st case of the Master theorem. §5 provides additional examples from

our benchmark programs.

4.1.2 General Divide-and-Conquer Recurrences. The Master theorem only solves recurrences defin-

ing divide-and-conquer algorithms with similar problem sizes and does not apply to those of the

form in Eq 1. Thus, because Dynaplex supports more general recurrences, it can infer recurrences

that the Master theorem cannot solve (e.g., 𝑇 (𝑛) = 𝑇 (𝑛
3
) +𝑇 (𝑛

2
) +𝑂 (𝑛)).

To solve such a general linear recurrence, we perform an overapproximation to obtain an upper

bound complexity of the recurrence. More specifically, Dynaplex uses the result in Theorem 4.2

below to convert a general recurrence into a new once that has a form supported by the Master

theorem and represents the upper bound complexity of the original recurrence. Then Dynaplex

applies the Master theorem to the new recurrence to obtain the upper (𝑂) bound complexity. For

example, we convert 𝑇 (𝑛) = 𝑇 (𝑛
3
) +𝑇 (𝑛

2
) +𝑂 (𝑛) to 𝑇 (𝑛) = 𝑇 (𝑛

2
) +𝑇 (𝑛

2
) +𝑂 (𝑛) and apply case 1

of the Master theorem to map it to 𝑂 (𝑛 lg𝑛).

Theorem 4.2. For recurrences of the form in Eq 1, i.e., 𝑇 (𝑛) = 𝑇 (𝑛
𝑏1
) + · · · +𝑇 (𝑛

𝑏𝑎
) + 𝑓 (𝑛), we can

apply the Master Theorem to the recurrences

• 𝐿(𝑛) = 𝑎 · 𝐿
(

𝑛
max(𝑏𝑖)

)
+ 1 to obtain the lower (Ω) complexity bound and

• 𝑈 (𝑛) = 𝑎 ·𝑈
(

𝑛
min(𝑏𝑖)

)
+ 𝑓 (𝑛) to obtain the upper (𝑂) complexity bound.

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 138. Publication date: October 2021.

Analyzing Program Complexity using Dynamically Inferred Recurrence Relations 138:11

Proof. For recurrences of the form in Eq 1, notice that 𝑇 (𝑛) is asymptotically positive (i.e.,

𝑇 (𝑛) > 0 when 𝑛 is sufficiently large) and monotonically increases (i.e., 𝑇 (𝑛 + 1) > 𝑇 (𝑛)). This is
because 𝑑𝑖 ≥ 1 and 𝑓 (𝑛) ≥ 1 monotonically non-decreases (assumptions given in Eq 3.1.2).

We now define the upper and lower bounds of the recurrences of the form in Eq 1 as the following

recurrences 𝐿(𝑛) and𝑈 (𝑛), respectively:

𝐿(𝑛) = 𝑎 · 𝐿
(

𝑛

max(𝑏𝑖)

)
+ 1

𝑈 (𝑛) = 𝑎 ·𝑈
(

𝑛

min(𝑏𝑖)

)
+ 𝑓 (𝑛)

These are the upper and lower bounds because (i) as 𝑇 (𝑛) is increasing and 𝑏𝑖 ≥ 1, we have

𝑇

(
𝑛

max(𝑏𝑖)

)
≤ 𝑇

(
𝑛
𝑏𝑖

)
≤ 𝑇

(
𝑛

min(𝑏𝑖)

)
and (ii) because 𝑓 (𝑛) ≥ 1, 𝐿(𝑛) ≤ 𝑇 (𝑛) ≤ 𝑈 (𝑛).

Then, by applying the Master Theorem to 𝐿(𝑛) and𝑈 (𝑛) (both of which have the form in Eq 1),

we get the lower (Ω) and upper (𝑂) complexity bounds, respectively. □

4.2 Solving Linear Recurrences
The technique described in §4.1 focuses on divide-and-conquer recurrences and does not apply to

linear recurrences of the form in Eq 3.1.2, where a subproblem is not a factor of the original problem.

Examples of such recurrences include 𝑇 (𝑛) = 𝑇 (𝑛 − 1) +𝑇 (𝑛 − 2) + 1 and 𝑇 (𝑛) = 2𝑇 (𝑛 − 1) + 1 of
the Fibonacci and Tower of Hanoi programs, respectively. Dynaplex maps recurrences of this form

and several of its variants to different classes of asymptotic complexity using the results established

below.

4.2.1 General Linear Recurrences. Here we establish the lower and upper complexity bounds for

linear recurrences of the form in Eq 2.

Theorem 4.3. For the recurrences of the form in Eq 2, i.e.,𝑇 (𝑛) = 𝑇 (𝑛−𝑑1) + · · · +𝑇 (𝑛−𝑑𝑎) + 𝑓 (𝑛),
the lower (Ω) and upper (𝑂) complexity bounds are:

complexity =

{
Ω(𝑛) 𝑂 (𝑛𝑓 (𝑛)) when 𝑎 = 1

Ω
(
𝑎
⌊ 𝑛
max(𝑑𝑖)

⌋
)

𝑂 (𝑎𝑛 𝑓 (𝑛)) when 𝑎 > 1

Proof. Note that the first part of the proof is similar to the proof given for Theorem 4.2. First,

note that 𝑇 (𝑛) is asymptotically positive and monotonically increases because 𝑑𝑖 ≥ 1 and 𝑓 (𝑛) ≥ 1

monotonically non-decreases. We define the following recurrences 𝐿(𝑛) and𝑈 (𝑛) as the upper and
lower bounds of the recurrences of the form in Eq 2, respectively:

𝐿(𝑛) = 𝑎 · 𝐿(𝑛 −max(𝑑𝑖)) + 1
𝑈 (𝑛) = 𝑎 ·𝑈 (𝑛 −min(𝑑𝑖)) + 𝑓 (𝑛)

These are the upper and lower bounds because (i) as 𝑇 (𝑛) is increasing and 𝑑𝑖 ≥ 1, we have

𝑇 (𝑛 −max(𝑑𝑖)) ≤ 𝑇 (𝑛 − 𝑑𝑖) ≤ 𝑇 (𝑛 −min(𝑑𝑖)) and (ii) because 𝑓 (𝑛) ≥ 1, 𝐿(𝑛) ≤ 𝑇 (𝑛) ≤ 𝑈 (𝑛).
Next, we compute the upper bound of the recurrence𝑈 (𝑛). The recursion tree of𝑈 (𝑛) has the

height ℎ = ⌊ 𝑛
min(𝑑𝑖) ⌋ + 1, and each non-leaf node has 𝑎 children. Hence, the closed form of𝑈 (𝑛) is

𝑈 (𝑛) =
ℎ−1∑︁
𝑗=0

(
𝑎 𝑗 · 𝑓 (𝑛 − 𝑖 ·min(𝑑𝑖))

)
Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 138. Publication date: October 2021.

138:12 Ishimwe et al.

Because 𝑛 − 𝑖 ·min(𝑑𝑖) ≤ 𝑛 and 𝑓 (𝑛) is increasing, 𝑓 (𝑛 − 𝑖 ·min(𝑑𝑖)) ≤ 𝑓 (𝑛). Hence,

𝑈 (𝑛) ≤
ℎ−1∑︁
𝑗=0

(
𝑎 𝑗 · 𝑓 (𝑛)

)
=

{
𝑎ℎ ·𝑓 (𝑛)
𝑎−1 if 𝑎 > 1

ℎ · 𝑓 (𝑛) if 𝑎 = 1

Because ℎ ≤ 𝑛, the upper bound of 𝑈 (𝑛) (and thus the recurrences of the form in Eq 2) is

𝑂 (𝑛 · 𝑓 (𝑛)) when 𝑎 = 1 and 𝑂 (𝑎𝑛 · 𝑓 (𝑛)) when 𝑎 > 1.

Finally, we use the similar reasoning to determine the lower bound of the recurrence 𝐿(𝑛). The
recurrence tree of 𝐿(𝑛) has the height 𝑔 = ⌊ 𝑛

max(𝑑𝑖) ⌋ + 1, thus the closed form of 𝐿(𝑛) is

𝐿(𝑛) =
𝑔−1∑︁
𝑗=0

(
𝑎 𝑗
)
=

{
𝑎𝑔

𝑎−1 if 𝑎 > 1

𝑔 if 𝑎 = 1

Hence, the lower bound of 𝐿(𝑛) (and thus the recurrences of the form in Eq 2) is Ω(𝑛) when
𝑎 = 1 and Ω

(
𝑎
⌊ 𝑛
max(𝑑𝑖)

⌋
)
when 𝑎 > 1.

□

4.2.2 Linear Recurrence Variants. From Theorem 4.3, we can derive the complexity for several

popular variants of the form in Eq 2. This allows Dynaplex to quickly solve linear recurrences that

frequently appear in practice. We also can establish the tight (Θ) complexity bounds in some cases.

Corollary 4.4. For the following forms of recurrences, we have the complexity bounds:
Recurrence Form Complexity Bounds Constraints on Eq 2

𝑇 (𝑛) = 𝑇 (𝑛 − 𝑑) + 𝑓 (𝑛) 𝑂 (𝑛𝑓 (𝑛)) 𝑎 = 1

𝑇 (𝑛) = 𝑇 (𝑛 − 𝑑1) +𝑇 (𝑛 − 𝑑2) + 𝑓 (𝑛) 𝑂 (2𝑛 𝑓 (𝑛)) 𝑎 = 2

𝑇 (𝑛) = 𝑇 (𝑛 − 𝑑1) + 1 Θ(𝑛) 𝑎 = 1 ∧ 𝑓 (𝑛) = 1

𝑇 (𝑛) = 𝑇 (𝑛 − 𝑑1) + · · · +𝑇 (𝑛 − 𝑑𝑎) + 1 Θ
(
𝑎
⌊ 𝑛
𝑑
0

⌋)
𝑎 > 1 ∧ 𝑓 (𝑛) = 1 ∧ 𝑑𝑖 are the same

Proof. The worst-case complexity bounds of the first two forms are obtained directly from

Theorem 4.3. For the third form when 𝑎 = 1, the upper and lower bounds, as shown in Theorem 4.3,

are Ω (𝑛) and𝑂 (𝑛𝑓 (𝑛)), respectively. Moreover, because 𝑓 (𝑛) = 1, the tight bound is Θ(𝑛). For the
fourth form when 𝑎 > 1, the upper and lower bounds are Ω

(
𝑎
⌊ 𝑛
max(𝑑𝑖)

⌋
)
and 𝑂

(
𝑎
⌊ 𝑛
min(𝑑𝑖)

⌋
𝑓 (𝑛)

)
as

shown in Theorem 4.3. Moreover, because 𝑓 (𝑛) = 1 and 𝑑0 = min(𝑑𝑖) = max(𝑑𝑖), the tight bound
is Θ

(
𝑎
⌊ 𝑛
𝑑
0

⌋
)
.

□

These forms of linear recurrences appear in many popular recursive algorithms. The first and

second forms map to worst-case (𝑂) complexity. The first maps recurrences such as 𝑇 (𝑛) =

𝑇 (𝑛 − 1) + 𝑂 (𝑛) of popular sorting algorithms (e.g., bubble and insertion) to the quadratic

complexity𝑂 (𝑛2). The secondmaps recurrenceswith two subproblems to an exponential complexity.

Note that even when 𝑓 (𝑛) is a constant, these recurrences still have an exponential upper bound

complexity 𝑂 (𝑎𝑛). For example, fibonacci has the recurrence 𝑇 (𝑛) = 𝑇 (𝑛 − 1) +𝑇 (𝑛 − 2) + 1 of
this form and thus an exponential complexity.

The third and fourth forms map recurrences to tight (Θ) complexity bounds under a couple of

additional constraints are common in many programs (e.g., 𝑓 (𝑛) = 1 and 𝑑𝑖 ’s are the same). The

third maps recurrences of common operations such as traversing lists or trees to a linear complexity.

Finally, the fourth maps recurrences such as 𝑇 (𝑛) = 2𝑇 (𝑛 − 1) + 1 of Hanoi to Θ(2𝑛).

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 138. Publication date: October 2021.

Analyzing Program Complexity using Dynamically Inferred Recurrence Relations 138:13

5 EVALUATION
Dynaplex is implemented in Python and uses the regression function polyfit from numpy [Harris

et al. 2020] to learn polynomial models. The tool is language-agnostic and works directly on given

program traces. Dynaplex detects the types of traces and performs the corresponding computation

(e.g., inferring recurrences for traces represented by execution trees and polynomial models for

traces involving program counters and input sizes). After obtaining recurrences, Dynaplex solves

them for closed-form solutions representing asymptotic complexity bounds.

Below we evaluate Dynaplex on its effectiveness at discovering program complexity and compare

it with several complexity analysis tools. The experiments and results reported here were obtained

on an AMD Ryzen 16-core machine with 32 GB of RAM running Linux. Dynaplex and its benchmark

data are available at https://github.com/unsat/dynaplex and Zenodo [Ishimwe et al. 2021].

5.1 Benchmarks and Setup
Benchmarks. To evaluate Dynaplex we used 37 programs shown in Table 1. The programs are

written in C++, Python, and OCaml, and collected from various sources (e.g., existing works on

CHORA [Breck et al. 2020], NPWCARP [Chatterjee et al. 2019]; OCaml’s 99 problems [Ocaml.org

2021]). We used all 17 programs from CHORA and NPWCARP. From OCaml’s 99 problems, we

randomly picked seven programs with known solutions, ranked medium or hard, and have diverse

input data structures such as trees, lists, graphs. We also used 13 recursive implementations of

popular algorithms collected from coding websites such as Geeksforgeeks. Additional details about

these programs are given below. Note that Dynaplex focuses on inferring recurrences for recursive

programs and thus does not directly work with imperative programs typically used in program

analysis competitions (e.g., Termination Competitions [2021]).

Most of our benchmark programs are classical recursive algorithms including Fibonacci, Tower

of Hanoi, different sorting algorithms, multiplication (Karatsuba and Strassen), and others
1
. The

programs are relatively small (most are less than 100 lines of code though the two programs

ConvexHull and Strassen are close to 200). However, they contain non-trivial data structures

and a wide range of complexity bounds (e.g., logarithmic, nonlinear polynomial degrees, and

exponential). The programs also have various forms of inputs, e.g., lists for BinarySearch or sorting
algorithms, integers for Factorial and Karatsuba, trees for Inorder, stack for ReverseStack,
logical expressions for TruthTable, 2-D matrices for Strassen.

Setup. For these experiments, we instrument the programs to capture necessary traces as de-

scribed in §3 and §5.4. Next, we run the instrumented programs on randomly generated inputs to

obtain execution traces for Dynaplex to analyze. Because our benchmark programs take various

1PowerBinary calculates 3
𝑛
mod 2

64
. ConvexHull finds a convex hull of a set of 2D points. BuildMSTree, QueryMSTree,

MemMSTree builds, queries, and reports memory usage of a Merge Sort Tree, respectively. BalTenary converts an integer to

balanced tenary form (e.g., 2021 to 10Z100ZZ). QuickSelect finds the median in an unsorted list of integers. PancakeSort
sorts an array 𝑎 by reversing the subarray 𝑎 [0..𝑖] for some 𝑖 at each step. PermGen generates a permuatation length 𝑛

from its alphabetical index. PermIndex gives the alphabetical index of a permutation. Tenary012 finds all numbers not

containing “012” in its tenary representation. Compress eliminates consecutive duplicates of list elements. EulerTotient
calculates the number of coprime integers. InOrder and InOrderBT performs inoder traversal of a normal and balanced

binary tree, respectively. Sort/Reverse Stack sort and reverse a stack. TruthTable computes the truth table of a given

logical expression. ClosestPair finds a pair of points that have shortest Euclidean distance. BallBins3 enumerates ways

to place 𝑛 labelled balls into 3 labelled bins. IsPrime checks if a integer is a prime number. BSTCopy copies a binary tree

(complexity expressed in terms of tree height). SubsetSum computes the size of subset whose sum is equal to the given sum.

QsortSteps implements quicksort (with the pivot being randomly selected) and QsortCalls models the recursive calls

made by quicksort (and thus only has a linear𝑂 (𝑛) complexity).

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 138. Publication date: October 2021.

https://github.com/unsat/dynaplex

138:14 Ishimwe et al.

Table 1. Results of Dynaplex on 37 recursive programs.

Dynaplex’s Results Ground Truth
Programs Inp (S,N) T(s) Recurrence Complexity Recurrence Complexity

BinarySearch 500,100 0.67 ✓ ✓ 𝑇 (𝑛) = 𝑇 (𝑛
2
) + 1 𝑂 (lg𝑛)

PowerBinary 500,100 1.83 ✓ ✓ 𝑇 (𝑛) = 𝑇 (𝑛
2
) + 1 𝑂 (lg𝑛)

GCD 500,100 1.85 ((((((hhhhhh𝑇 (𝑛) = 𝑇 (𝑛
6
) + 1 ✓ 𝑇 (𝑛,𝑚) = 𝑇 (𝑚,𝑛%𝑚) + 1 𝑂 (lg𝑛)

BalTernary 500,100 1.81 ✓ ✓ 𝑇 (𝑛) = 𝑇 (𝑛
3
) + 1 𝑂 (lg

3
𝑛)

QueryMSTree 500,100 1.34

((((((((hhhhhhhh
𝑇 (𝑛) = 𝑇 (𝑛

6
) +𝑇 (𝑛

2
) + 1 ��HH𝑂 (𝑛) – 𝑂 (lg2 𝑛)

Factorial 20,100 1.1 ✓ ✓ 𝑇 (𝑛) = 𝑇 (𝑛 − 1) + 1 𝑂 (𝑛)
QuickSelect 500,100 1.33 ✓ ✓ 𝑇 (𝑛) = 𝑇 (𝑛

2
) + 𝑛 𝑂 (𝑛)

Compress 500,100 0.76 ✓ ✓ 𝑇 (𝑛) = 𝑇 (𝑛 − 1) + 1 𝑂 (𝑛)
IsPrime 500,100 0.72 ✓ ✓ 𝑇 (𝑛) = 𝑇 (𝑛 − 1) + 1 𝑂 (𝑛)
EulerTotient 500,100 0.69 ✓ ✓ 𝑇 (𝑛) = 𝑇 (𝑛 − 1) + 1 𝑂 (𝑛)
InOrder 500,100 7.09 ✓ ✓ 𝑇 (𝑛) = 2𝑇 (𝑛

2
) + 1 𝑂 (𝑛)

InOrderBT 500,100 7.12 ✓ ✓ 𝑇 (𝑛) = 2𝑇 (𝑛
2
) + 1 𝑂 (𝑛)

QsortCalls 500,100 1.57

(((((((((hhhhhhhhh
𝑇 (𝑛) = 𝑇 (𝑛

14
) +𝑇 (𝑛

3
) + 𝑛 ✓ 𝑇 (𝑛) = 𝑇 (𝑛 − 1) + 1 𝑂 (𝑛)

ClosestPair 500, 100 0.98 ✓ ✓ 𝑇 (𝑛) = 2𝑇 (𝑛
2
) + 𝑛 𝑂 (𝑛 lg𝑛)

MergeSort 500,100 1.47 ✓ ✓ 𝑇 (𝑛) = 2𝑇 (𝑛
2
) + 𝑛 𝑂 (𝑛 lg𝑛)

Convex Hull 500,100 1.71 ✓ ✓ 𝑇 (𝑛) = 2𝑇 (𝑛
2
) + 𝑛 𝑂 (𝑛 lg𝑛)

BuildMSTree 500,100 1.81 ✓ ✓ 𝑇 (𝑛) = 2𝑇 (𝑛
2
) + 𝑛 𝑂 (𝑛 lg𝑛)

MemMSTree 500,100 1.58 ✓ ✓ 𝑇 (𝑛) = 2𝑇 (𝑛
2
) + 𝑛 𝑂 (𝑛 lg𝑛)

HeapSort 500,100 2.97 ((((((hhhhhh𝑇 (𝑛) = 𝑇 (𝑛/2) + 𝑛 ��HH𝑂 (𝑛) 𝑇 (𝑛) = 𝑇 (𝑛 − 1) + lg𝑛 𝑂 (𝑛 lg𝑛)

Karatsuba 20,100 1.11 ✓ ✓ 𝑇 (𝑛) = 3𝑇 (𝑛
2
) + 1 𝑂 (𝑛lg

2
3)

Strassen 32,100 11.80 ✓ ✓ 𝑇 (𝑛) = 7𝑇 (𝑛
2
) + 𝑛2 𝑂 (𝑛lg

2
7)

BubbleSort 500,100 0.97 ✓ ✓ 𝑇 (𝑛) = 𝑇 (𝑛 − 1) + 𝑛 𝑂 (𝑛2)
InsertionSort 500,100 1.26 ✓ ✓ 𝑇 (𝑛) = 𝑇 (𝑛 − 1) + 𝑛 𝑂 (𝑛2)
SelectionSort 500,100 1.28 ✓ ✓ 𝑇 (𝑛) = 𝑇 (𝑛 − 1) + 𝑛 𝑂 (𝑛2)
PancakeSort 500,100 1.44 ✓ ✓ 𝑇 (𝑛) = 𝑇 (𝑛 − 1) + 𝑛 𝑂 (𝑛2)
PermGen 500,100 1.44 ✓ ✓ 𝑇 (𝑛) = 𝑇 (𝑛 − 1) + 𝑛 𝑂 (𝑛2)
PermIndex 20,100 2.00 ✓ ✓ 𝑇 (𝑛) = 𝑇 (𝑛 − 1) + 𝑛 𝑂 (𝑛2)
SortStack 500,100 4.05 ✓ ✓ 𝑇 (𝑛) = 𝑇 (𝑛 − 1) + 𝑛 𝑂 (𝑛2)
ReverseStack 500,100 3.85 ✓ ✓ 𝑇 (𝑛) = 𝑇 (𝑛 − 1) + 𝑛 𝑂 (𝑛2)
QsortSteps 500,100 1.57

((((((((hhhhhhhh
𝑇 (𝑛) = 𝑇 (𝑛

15
) +𝑇 (𝑛

3
) + 1 ��HH𝑂 (𝑛) 𝑇 (𝑛) = 𝑇 (𝑛 − 1) + 𝑛 𝑂 (𝑛2)

BSTCopy 10, 100 3.2 ✓ ✓ 𝑇 (𝑛) = 2𝑇 (𝑛 − 1) + 1 𝑂 (2𝑛)
Fibonacci 10,100 4.35 ✓ ✓ 𝑇 (𝑛) = 𝑇 (𝑛 − 2) +𝑇 (𝑛 − 1) + 1 𝑂 (2𝑛)
Hanoi 10,100 4.10 ✓ ✓ 𝑇 (𝑛) = 2𝑇 (𝑛 − 1) + 1 𝑂 (2𝑛)
SubsetSum 10, 100 3.3 ✓ ✓ 𝑇 (𝑛) = 2𝑇 (𝑛 − 1) + 1 𝑂 (2𝑛)
TruthTable 10,100 5.2 ✓ ✓ 𝑇 (𝑛) = 2𝑇 (𝑛 − 1) + 1 𝑂 (2𝑛)

BallBins3 10, 100 3.2 ✓ ✓ 𝑇 (𝑛) = 3𝑇 (𝑛 − 1) + 1 𝑂 (3𝑛)
Tenary012 10,100 2.15 ✓ ✓ 𝑇 (𝑛) = 3𝑇 (𝑛 − 1) + 1 𝑂 (3𝑛)

forms of inputs such as integers, strings, lists, matrix, the generated inputs vary for each program

(additional details in §5.2).

For each program, we run Dynaplex five times and report the median results. Dynaplex is highly

automated but can be customized using the maximum degree value for regression learning discussed

in §3.2 (set to 5 by default) and the frequency value for choosing the representative difference value

discussed in §3.1.2 (set to 95% by default). All these parameters can be changed by Dynaplex’s user;

we chose these values based on our experience.

5.2 Dynaplex’s Results
5.2.1 Table Format. Table 1 lists the results for the 37 benchmark programs. The first four columns

show Dynaplex’s results. Column Inp (S, N) shows information about the inputs used to generate

traces: S is the maximum size of the inputs and N is the number of inputs. For example, for sorting

algorithms, we randomly generate 100 lists of lists of various sizes with the maximum list having

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 138. Publication date: October 2021.

Analyzing Program Complexity using Dynamically Inferred Recurrence Relations 138:15

def karatsuba(x, y):

lenx = len(str(x))

leny = len(str(y))

if lenx ==1 or leny ==1:

return x*y

n = max(lenx ,leny)

n2 = n / 2

a = x / 10 ** n2

b = x % 10 ** n2

c = y / 10 ** n2

d = y % 10 ** n2

ac = karatsuba(a,c)

bd = karatsuba(b,d)

ad_plus_bc =

karatsuba(a+b, c+d)

- ac - bd

prod = ac * 10**(2* n2)

+ (ad_plus_bc * 10**n2)

+ bd

return prod

Fig. 4. Karatsuba algorithm.

500 elements, and for programs whose inputs are integers, e.g., isPrime, we run the programs with

100 random integers whose values are at most 500. For some programs, especially those that are

exponential in the input, we randomly generate integers with small values, e.g., 10 for Fibonacci
and Hanoi, because applying these programs on large values would cause the program to run

slowly or produce a large number of traces. Column T(s) shows the total run time in seconds (both

the runtime of the program on inputs and of Dynaplex).

The next two columns Recurrence and Complexity show the discovered recurrences and

complexity bounds: ✓ indicates Dynaplex’s results match the ground truth (i.e., actual, recurrences

and complexity bounds of these programs) while �AR indicates that Dynaplex found the incorrect

result R. The last two columns Recurrence and Complexity show the ground truth. Most of these

programs are standard algorithms with well-known recurrences and worst-case complexity bounds.

For others, e.g., QueryMSTree and TruthTablewe manually analyze the programs to determine the

ground truths. Note that QueryMSTree cannot be defined by a recurrence (and hence is indicated by
a –). This program runs in 𝑂 (lg2 𝑛) and has different recurrences depending on recursive depths.

Also note we present the complexity results of Dynaplex as upper bounds (𝑂), even though

Dynaplex produces more precise bounds (Θ) in many cases as shown in §4. This presentation makes

it easier to compare Dynaplex’s results with worst-case complexity ground truths.

5.2.2 Results. In summary, out of 37 programs, Dynaplex got correct results for both recurrences

and complexity bounds for 32 programs; got incorrect results for both recurrences and complexity

bounds for two programs (QueryMStree, HeapSort, QsortSteps); and got incorrect recurrences

but correct complexity results for two programs (GCD, QsortCalls). The running time for most

programs are about two seconds. Strassen takes 11.80s because the program has much longer

runtime than others (inputs of Strassen are 32 × 32 matrices).

Success. Dynaplex found the correct recurrences and complexity for 32/37 programs. These

programs have a wide range of complexity bounds including logarithmic, nonlinear, and exponential

polynomials. Dynaplex also discovers complexities involving non-polynomial terms, e.g., 𝑂 (𝑛lg2 3)
of Karatsuba and 𝑂 (𝑛log2 7) for Strassen.

Dynamic analysis allows Dynaplex to handle complex programs and obtain precise results. For

example, consider the karatsuba algorithm shown in Fig. 4, adapted from [Jayaraman 2015]. This

algorithmmultiplies two 𝑛-digit numbers 𝑥,𝑦 using at most 𝑛lg2 3 ≈ 𝑛1.58 single-digit multiplications

and thus karatsuba is asymptotically faster than standard multiplication algorithms, which typi-

cally require 𝑛2 single-digit multiplications. As shown in the Figure, the program uses non-trivial

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 138. Publication date: October 2021.

138:16 Ishimwe et al.

modulo and exponential operations, whose semantics could be difficult for static analyses to reason

about. However, by just running the program on random inputs and analyzing the execution traces,

Dynaplex was able to infer the correct recurrence 𝑇 (𝑛) = 3𝑇 (𝑛
2
) + 1 and solved it to obtain the

correct complexity 𝑂 (𝑛log2 3) or 𝑂 (𝑛1.58).
We note that other dynamic and polynomial-based techniques, e.g., the mentioned SymInfer

tool [Nguyen et al. 2017b] and the regression learning technique described in §3.2 would not be to

obtain such a result because 𝑛1.58 is not a polynomial. Interestingly, the template-based approach

described in [Chatterjee et al. 2019] gives 𝑂 (𝑛1.6) for karatsuba. While this is correct, it is less

precise than Dynaplex’s 𝑂 (𝑛1.58) result (additional comparisons are given in §5.3).

Fail. Dynaplex failed to generate correct results for both recurrences and complexity bounds for

three programs (HeapSort, QsortSteps, QueryMStree). The main reason is because the recursive

calls and subproblems in these programs vary. In HeapSort the recursive calls are non-deterministic

and are executed only under certain conditions. In QsortSteps, the sizes of the subproblems depend

on the randomly selected pivot. For QueryMSTree, the program exhibits different recurrences in

different recursion depths. In short, for these programs, the obtained execution trees are not

consistent (e.g., some levels have𝑚 children while others have 𝑛 children) and therefore cause

Dynaplex to learn imprecise recurrences that lead to incorrect complexity bounds.

Note that for QsortSteps and QueryMSTree, Dynaplex detected that the obtained divide-and-

conquer recurrence are not support by the Master theorem and applied the overapproximation

techinque described in §4.1.2 to solve them.

Incorrect Recurrences but Correct Complexity. For two programs (GCD and QsortCalls, Dynaplex
obtained incorrect recurrences, but still can solve them to get the correct complexity.

def gcd(a,b):

if(b==0):

return a

else:

return gcd(b,a%b)

The Python program on the right computes the greatest com-

mon divisor (GCD).While being our smallest benchmark program,

GCD has a non-trivial recurrence𝑇 (𝑛,𝑚) = 𝑇 (𝑚,𝑛%𝑚) +1 that is
not support by Dynaplex. Thus, it is not suprise that Dynaplex

generates an incorrect recurrence𝑇 (𝑛) = 𝑇 (𝑛
6
) + 1. Nonetheless,

Dynaplex was able to solve this incorrect recurrence using the Master theorem and got the correct

complexity 𝑂 (𝑛).
A similar situation happened with QsortCalls, where we inferred an incorrect recurrence

from inconsistent traces due to the use of random pivot selection for partitioning. Note that this

recurrence𝑇 (𝑛) = 𝑇 (𝑛
14
) +𝑇 (𝑛

3
) +𝑛 is also not supported by the Master theorem, and thus Dynaplex

converted it to 𝑇 (𝑛) = 𝑇 (𝑛
3
) +𝑇 (𝑛

3
) + 𝑛 and applied the Master theorem to get 𝑂 (𝑛), which is the

correct complexity bound of the program.

Thus, Dynaplex was able to recover certain inaccuracies from the inferred recurrences. There

is no guarantee that this would work (e.g., we likely get “lucky” that the incorrect recurrences

mapped to correct solutions), but this is still an interesting behavior that we observe in the work.

5.2.3 Analyzing Growth Plots. Instead of using a technique such as Dynaplex, it is tempting to

plot and analyze the relationship between the size of the inputs and the number of instructions or

statements executed when running the program on random or even worst-case inputs (e.g., as done

in several works [Goldsmith et al. 2007; Zaparanuks and Hauswirth 2012]). However, while such

plots can help the user gain visual intuition about the programs’ growth, they can also mislead the

user in many cases, especially those that involve subtle complexity bounds.

For example, Fig. 5 shows that it is not easy to reason from the plots that the complexity bounds

of ClosestPair and Strassen are 𝑂 (𝑛 lg𝑛) and 𝑂 (𝑛lg2 7), respectively. In contrast, an approach

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 138. Publication date: October 2021.

Analyzing Program Complexity using Dynamically Inferred Recurrence Relations 138:17

Fig. 5. Difficulty in reasoning about program complexity from growth plots.

Table 2. Comparison with other tools.

Benchmark NPWCARP CHORA Dynaplex Ground Truth

QsortCalls ✓ ���XXX𝑂 (2𝑛) ✓ 𝑂 (𝑛)

Mergesort ✓ ✓ ✓ 𝑂 (𝑛 lg𝑛)
ClosestPair ✓ – ✓ 𝑂 (𝑛 lg𝑛)

Karatsuba ���XXX𝑂 (𝑛1.6) ✓ ✓ 𝑂 (𝑛lg2 3)
Strassen ���XXX𝑂 (𝑛2.9) ✓ ✓ 𝑂 (𝑛lg2 7)

QsortSteps ✓ ���XXX𝑂 (𝑛2𝑛) ���H
HH𝑂 (𝑛) 𝑂 (𝑛2)

Fibonacci – ✓ ✓ 𝑂 (2𝑛)
Hanoi – ✓ ✓ 𝑂 (2𝑛)
SubsetSum – ✓ ✓ 𝑂 (2𝑛)
BSTCopy – ✓ ✓ 𝑂 (2𝑛)
BallBins3 – ✓ ✓ 𝑂 (3𝑛)

Ackermann – – – 𝑂 (𝑖𝐴(𝑖, 𝑛))

such as Dynaplex explicitly provides closed-form solutions representing complexity bounds and

thus mitigates potential misunderstandings from the user.

5.3 Comparing to Others
We compare Dynaplex with two static complexity analysis tools: CHORA [Breck et al. 2020],

which uses templates and constraint solving to find recurrences and runtime complexity, and

NPWCARP [Chatterjee et al. 2019], which uses templates and ranking functions to compute

worst-case complexity. For this comparison, we use the 12 benchmark programs in CHORA.

Note that we were not able to fully run CHORA (even when using the provided virtual machine,

we still cannot run the tool on its own benchmark programs) and thus used the reported results

in [Breck et al. 2020], which states that CHORA outperformed several other complexity analyzers

(e.g., ICRA [Kincaid et al. 2017]). For NPWCARP, we were not able to run the tool on many programs

because it does not support the languages of these programs (e.g., modulo operations or complex

data structures).

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 138. Publication date: October 2021.

138:18 Ishimwe et al.

Results. Table 2 shows the results of the three tools comparing to the ground truth complexity.

Similar to the format of Table 1, ✓ and �AR indicate that the result R matches and does not match the

ground truth, respectively.

In summary, other than the Ackermann program that no tool can analyze, among the remaining

11 programs, Dynaplex got one mismatch (QsortSteps); CHORA fails to produce result for one

program (ClosestPair) and got two mismatches (the two quicksort programs QsortCalls and
QsortSteps); and NPWCARP did not run on five programs and got two mismatches (Karatsuba
and Strassen).

For eight programs, both CHORA and Dynaplex produced precise complexity bounds that match

the ground truths. For QsortSteps, both tools failed to obtain the ground truth complexity 𝑂 (𝑛2).
Dynaplex got an incorrect complexity 𝑂 (𝑛) due to random pivot section as explained in §5.2 while

CHORA got a correct but imprecise and strange exponential 𝑂 (𝑛2𝑛) result 2. CHORA also got this

exponential complexity for QsortCalls. For closestPair, both Dynaplex and NPWCARP got the

ground truth 𝑂 (𝑛 lg𝑛) while CHORA did not produce a result.

Comparing to NPWCARP, both CHORA and Dynaplex worked with more programs. NPWCARP

got less precise bounds for strassen and karatsuba as these involve non-polynomial terms such as

𝑛lg2 7. Moreover, NPWCARP does not support exponential complexity such as those of Fibonacci
and Hanoi and other exponential programs listed in Table 2.

All three tools failed on the Ackermann function, which has the unusual recurrence 𝐴(𝑖, 𝑛) =
𝐴(𝑖 − 1, 𝐴(𝑖, 𝑛 − 1)) for 𝑖, 𝑛 > 0 and the 𝑂 (𝑖𝐴(𝑖, 𝑛)) complexity [Grossman and Zeitman 1988].

NPWCARP does not have a template supporting this complexity and CHORA’s generated recurrence

invariants were not able to establish this complexity. Dynaplex was not able to obtain execution

traces for this program because its computation is extremely intensive, even on small inputs.

In general, we found that it is difficult to directly compare these tools. Static analysis techniques

such as CHORA and NPWCARP aim to reason about all program paths soundly, but doing so is

often expensive and only possible for restricted classes of properties, recurrences, or programs

(e.g., NPWCARP does not support many programs). Dynamic analyses such as Dynaplex limit their

attention to only some of a program’s paths, and thus provide no guarantee that those invariants are

correct, but can often be more efficient and produce more expressive results (e.g., non-polynomial

complexity bounds of Karatsuba and Strassen). Our experiments show that Dynaplex is efficient

and produces accurate results, even when using just random inputs.

5.4 Discussion
Dynamic Analysis and Unsoundness. Unsoundness is a major limitation of Dynaplex and dynamic

analysis in general. Dynaplex can miss complexity bounds that appear in specific program branches

or provide inaccurate complexity results due to given traces. Moreover, if the program involves

unknown auxiliary operations or functions that contribute to the overall complexity cost, and the

user does not instrument these to capture instruction counts, then Dynaplex would treat these

calls as having constant costs and thus produce inaccurate results. As described below, hardware

performance counters can help instrumentation by automatically capturing instruction counts.

Nonetheless, as most existing complexity analyses are done statically (§6), our dynamic approach

provides important intellectual diversity to the research area. Moreover, we believe that dynamic

analysis, while having many issues of its own, can complement and help address problems in static

analyses and that the combination of the two approaches can help address issues that neither one

can solve alone. For example, we can use Dynaplex to cheaply guess expressive invariant and

2
The CHORA paper [Breck et al. 2020] also shows that the expected complexity is quadratic but does not explain why

CHORA produced an exponential bound.

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 138. Publication date: October 2021.

Analyzing Program Complexity using Dynamically Inferred Recurrence Relations 138:19

recurrence results on difficult programs and then use an existing static tool to check these guesses.

Here we work on the first dynamic component and leave static integration to future work. Existing

input generation techniques such as symbolic execution can also help by generating hard-to-reach

or worst-case inputs for the dynamic learning component (§6).

Solving Recurrences with Pattern Matching. There are many powerful techniques for solving

recurrences such as the aforementioned Akra-Bazzi method or the work in [Eberl 2019] for solving

linear recurrences. The WolframAlpha search engine also implements various sophisticated algo-

rithms to solve many complex and nonlinear recurrences. Our contributions are not new algorithms

that are more powerful or general, but rather the opposite: to recognize simple patterns that map to

specific and common forms of complexity bounds. By using these patterns, we can instantaneously

and soundly map recurrences of these forms directly to complexity bounds (in many cases, exact

bounds). The contributions and usefulness of these patterns are similar to those from the Master

theorem that just solve three specific forms of divide-and-conquer recurrences while there exist

much more general approaches such as Akra-Bazzi.

Instrumentation. As described in §3, we require program instrumentation to obtain execution

traces. This type of instrumentation is also used in other existing work. For example , Le et al. [2020]

uses similar instrumentation to obtain traces to dynamically infer ranking functions and recurrence

sets for termination analysis. Dynaplex also includes a library we wrote to help automate the

instrumentation for C++ programs. With this library, the user only needs to specify the problem

size (e.g., size of a tree if the input is a tree and length of list if the input is list) and increment a

counter in each loop or recursive call. The library uses this information to automatically instrument

the program to record instructions, loop counts, and problem sizes for each function call.

Note that even with the help of the library, the user can still introduce bugs causing incorrect

results, e.g., if they misidentify problem sizes or neglect to instrument non-constant auxiliary

functions as mentioned above. We did not face such issues in our experimentations as these details

can be obtained easily from the benchmark programs. Nonetheless, we are exploring a more

automatic and powerful trace collection technique using hardware counters [Drongowski 2007].
These counters are often used for system performance monitoring and provide low-level program

execution details such as CPU cycles, number of instructions, cache hits and misses, and branch

mispredictions. Thus, we can obtain program executions using these counters without depending

on accurate instrumentation (we do not even need program code and can also analyze binary and

auxiliary libraries).

6 RELATEDWORKS
Dynamic Invariant Generation. Dynaplex is inspired by approaches that use dynamically inferred

invariants for complexity analysis. SymInfer and NumInv [Nguyen et al. 2017a,b] compute nonlinear

polynomial invariants for Java programs from execution traces and use either a symbolic execution

tool or symbolic states extracted from symbolic execution to refute spurious invariants and generate

counterexample inputs. An application of these invariants is that they can be used to capture the

program complexity of several imperative programs. More recently, Dynamite [Le et al. 2020]

extends these nonlinear invariants to represent ranking functions and recurrence sets for the

analysis of program termination and non-termination behaviors.

Nguyen et al. [2020] propose using dynamic analysis to infer recurrences and applies the Master

theorem to solve them for complexity bounds. However, this work mainly provides the high-

level ideas and does not provide any algorithms or formal analyses. It also does not have an

implementation, i.e., processes such as analyzing traces, inferring and solving recurrences are all

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 138. Publication date: October 2021.

138:20 Ishimwe et al.

done by hand. Dynaplex fully developed, implemented, and thoroughly evaluated the idea of using

dynamically inferred recurrences to discover program complexity.

Static Analyses. Manyworks use static analysis to discover the complexity of imperative programs.

The AARA (automatic amortized resource analysis) work from Hofmann and Jost [2003] uses

counter and type systems to compute function describing the upper bound of heap cell usage

for space complexity. Subsequent AARA techniques (e.g., [Hoffmann et al. 2011; Hoffmann and

Hofmann 2010]) are built on Hofmann and Jost [2003] to predict usage of time and space complexity

for functional programs and extends type systems to formalize and prove these resource bounds.

LOOPUS [Sinn et al. 2014, 2017] uses difference constraints for complexity and resource bound

analysis. KoAT [Brockschmidt et al. 2016] uses polynomial ranking functions by combining symbolic

runtime and size bounds to generate invariants for complexity analysis of imperative integer

programs. SPEED [Gulwani 2009; Gulwani et al. 2009a,c] generates linear invariants to compute

non-linear and disjunctive bounds. SPEED also uses abstract interpretation to compute non-linear

bounds involving operators such as logarithm, exponentiation, multiplication, square-root, and

max [Gulavani and Gulwani 2008].

Several works develop static complexity analyses for recursive programs. The NPWCARP

tool [Chatterjee et al. 2019] mentioned in §5.3 uses ranking functions and linear programming to

compute non-polynomial worst-case upper bounds of both imperative and recursive programs.

This technique requires the user to input the invariant template and ranking functions to work.

de Oliveira et al. [2016]; Farzan and Kincaid [2015]; Kincaid et al. [2019] compute recurrence

relations from pre- and post-states of loops and use them to generate loop invariants to establish

complexity bounds. ICRA [Kincaid et al. 2017] uses tensor product for recurrence-based invariant

generation for linear recursion. The CHORA tool [Breck et al. 2020] used in §5.3 builds on ICRA

and combines templates-based and recurrence-based techniques to generate complexity bounds.

Cutler et al. [2020] use static analysis and designs a language to compute recurrences to capture

amortized cost of higher-order function. Several other techniques focus on recurrence relations for

worst-case complexity analysis [Albert et al. 2009, 2008, 2007; Flajolet et al. 1991; Grobauer 2001].

For example, Albert et al. [2008] solve recurrence relations using evaluation trees and can derive

the complexity bound of merge sort.

In contrast to these works, Dynaplex uses dynamic analysis to support programs written in

various languages and focuses on generating and solving recurrence invariants to capture the

complexity of a recursive program. In §5.3 we also compare Dynaplex to NPWCARP and CHORA.

WCET Inputs and Verification. Another direction taken in complexity analysis is the generation

of input that triggers the worst-case execution behavior of programs. [Wang and Hoffmann 2019]

use the mentioned type-based resource analysis ideas from Hoffman et al. to synthesize WCET

inputs. The work in [Lemieux et al. 2018; Petsios et al. 2017] uses evolutionary fuzzing techniques

to generate inputs with higher total execution path length. Users can run these inputs through a

standard profiling tool to produce profiles or plots visualizing the growth [Goldsmith et al. 2007;

Graham et al. 1982; Nethercote and Seward 2003; Zaparanuks and Hauswirth 2012].

There are also works on verifying given complexity bounds [Srikanth et al. 2017]. In particular,

the TiML functional language [Wang et al. 2017] allows a user to specify time complexity as types

and then uses type checking to verify the specified complexity.

In this work, we apply dynamic analysis on randomly generated inputs and therefore have no

soundness guarantee on the inferred recurrence results. In future work, we will explore using these

verification techniques and WCET inputs to improve the confidence level of Dynaplex’s results.

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 138. Publication date: October 2021.

Analyzing Program Complexity using Dynamically Inferred Recurrence Relations 138:21

7 CONCLUSION
We introduce Dynaplex, a new dynamic analysis technique and tool to analyze the asymptotic

runtime complexity of recursive programs. Dynaplex learns divide-and-conquer and linear recur-

rences describing recursive programs and then uses pattern matching to map the recurrences to

closed-form solutions representing various asymptotic complexity bounds. Our evaluation shows

that Dynaplex is effective in inferring accurate recurrences and complexity bounds for challenging

recursive programs, even when just using randomly generated inputs.

ACKNOWLEDGMENTS
We thank the anonymous reviewers for helpful comments. This material is based in part upon

work supported by the National Science Foundation under grant numbers 1948536, 2107035 and

U.S. Army Research Office under grant number W911NF-19-1-0054.

REFERENCES
Elvira Albert, Puri Arenas, Samir Genaim, Miguel Gómez-Zamalloa, German Puebla, Diana Ramírez, G Román, and Damiano

Zanardini. 2009. Termination and cost analysis with COSTA and its user interfaces. Electronic Notes in Theoretical
Computer Science 258, 1 (2009), 109–121.

Elvira Albert, Puri Arenas, Samir Genaim, and Germán Puebla. 2008. Automatic inference of upper bounds for recurrence

relations in cost analysis. In International Static Analysis Symposium. Springer, 221–237.

Elvira Albert, Puri Arenas, Samir Genaim, Germán Puebla, and Damiano Zanardini. 2007. Cost Analysis of Java Bytecode.

In European Symposium on Programming. Springer, 157–172.
Thomas Ball and Sriram K. Rajamani. 2001. Automatically Validating Temporal Safety Properties of Interfaces. In SPIN

Symposium on Model Checking of Software. Springer, 103–122.
Jason Breck, John Cyphert, Zachary Kincaid, and Thomas Reps. 2020. Templates and Recurrences: Better Together. In

Proceedings of the 41st ACM SIGPLAN Conference on Programming Language Design and Implementation (London, UK)

(PLDI 2020). Association for Computing Machinery, New York, NY, USA, 688–702.

Marc Brockschmidt, Fabian Emmes, Stephan Falke, Carsten Fuhs, and Jürgen Giesl. 2016. Analyzing runtime and size

complexity of integer programs. ACM Transactions on Programming Languages and Systems (TOPLAS) 38, 4 (2016), 1–50.
Jacob Burnim, Sudeep Juvekar, and Koushik Sen. 2009. WISE: Automated test generation for worst-case complexity. In 2009

IEEE 31st International Conference on Software Engineering. IEEE, 463–473.
Krishnendu Chatterjee, Hongfei Fu, and Amir Kafshdar Goharshady. 2019. Non-polynomial worst-case analysis of recursive

programs. ACM Transactions on Programming Languages and Systems 41, 4 (2019), 1–52.
Thomas H Cormen, Charles E Leiserson, Ronald L Rivest, and Clifford Stein. 2009. Introduction to algorithms. MIT press.

Joseph W Cutler, Daniel R Licata, and Norman Danner. 2020. Denotational recurrence extraction for amortized analysis.

Proceedings of the ACM on Programming Languages 4, ICFP (2020), 1–29.

Manuvir Das, Sorin Lerner, and Mark Seigle. 2002. ESP: path-sensitive program verification in polynomial time. SIGPLAN
Notices 37, 5 (2002), 57–68.

Leonardo De Moura and Nikolaj Bjørner. 2008. Z3: An efficient SMT solver. In Tools and Algorithms for the Construction and
Analysis of Systems. Springer, 337–340.

Steven de Oliveira, Saddek Bensalem, and Virgile Prevosto. 2016. Polynomial invariants by linear algebra. In International
Symposium on Automated Technology for Verification and Analysis. Springer, 479–494.

Paul J Drongowski. 2007. Instruction-based sampling: A new performance analysis technique for AMD family 10h processors.

Advanced Micro Devices (2007).
Manuel Eberl. 2019. Verified solving and asymptotics of linear recurrences. In Proceedings of the 8th ACM SIGPLAN

International Conference on Certified Programs and Proofs. 27–37.
Jeff Erickson. 2013. Solving Recurrences. http://jeffe.cs.illinois.edu/teaching/algorithms/notes/99-recurrences.pdf, accessed

on September 8, 2021.

Michael D. Ernst. 2000. Dynamically detecting likely program invariants. Ph. D. Dissertation. University of Washington.

Michael D. Ernst, Jeff H. Perkins, Philip J. Guo, Stephen McCamant, Carlos Pacheco, Matthew S. Tschantz, and Chen Xiao.

2007. The Daikon system for dynamic detection of likely invariants. Science of Computer Programming (2007), 35–45.

Azadeh Farzan and Zachary Kincaid. 2015. Compositional recurrence analysis. In 2015 Formal Methods in Computer-Aided
Design (FMCAD). IEEE, 57–64.

Philippe Flajolet, Bruno Salvy, and Paul Zimmermann. 1991. Automatic average-case analysis of algorithms. Theoretical
Computer Science 79, 1 (1991), 37–109.

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 138. Publication date: October 2021.

http://jeffe.cs.illinois.edu/teaching/algorithms/notes/99-recurrences.pdf

138:22 Ishimwe et al.

Simon F Goldsmith, Alex S Aiken, and Daniel S Wilkerson. 2007. Measuring empirical computational complexity. In

Proceedings of the the 6th joint meeting of the European software engineering conference and the ACM SIGSOFT symposium
on The foundations of software engineering. 395–404.

Susan L Graham, Peter B Kessler, and Marshall K McKusick. 1982. Gprof: A call graph execution profiler. ACM Sigplan
Notices 17, 6 (1982), 120–126.

Bernd Grobauer. 2001. Cost recurrences for DML programs. ACM SIGPLAN Notices 36, 10 (2001), 253–264.
JerroldWGrossman and R Suzanne Zeitman. 1988. An inherently iterative computation of Ackermann’s function. Theoretical

computer science 57, 2-3 (1988), 327–330.
Bhargav S Gulavani and Sumit Gulwani. 2008. A numerical abstract domain based on expression abstraction and max

operator with application in timing analysis. In International Conference on Computer Aided Verification. Springer,
370–384.

Sumit Gulwani. 2009. SPEED: Symbolic Complexity Bound Analysis. In Computer Aided Verification. Springer-Verlag, 51–62.
Sumit Gulwani, Sagar Jain, and Eric Koskinen. 2009a. Control-flow Refinement and Progress Invariants for Bound Analysis.

In Programming Language Design and Implementation. 375–385.
Sumit Gulwani, Krishna K Mehra, and Trishul Chilimbi. 2009b. Speed: precise and efficient static estimation of program

computational complexity. ACM Sigplan Notices 44, 1 (2009), 127–139.
Sumit Gulwani, Krishna K. Mehra, and Trishul M. Chilimbi. 2009c. SPEED: precise and efficient static estimation of program

computational complexity. In Principles of Programming Languages. ACM, 127–139.

Charles R. Harris, K. Jarrod Millman, Stéfan J. van der Walt, Ralf Gommers, Pauli Virtanen, David Cournapeau, Eric Wieser,

Julian Taylor, Sebastian Berg, Nathaniel J. Smith, Robert Kern, Matti Picus, Stephan Hoyer, Marten H. van Kerkwijk,

Matthew Brett, Allan Haldane, Jaime Fernàndez del Río, Mark Wiebe, Pearu Peterson, Pierre Gérard-Marchant, Kevin

Sheppard, Tyler Reddy, Warren Weckesser, Hameer Abbasi, Christoph Gohlke, and Travis E. Oliphant. 2020. Array

programming with NumPy. Nature 585, 7825 (Sept. 2020), 357–362. https://doi.org/10.1038/s41586-020-2649-2

ThomasA. Henzinger, Ranjit Jhala, RupakMajumdar, andGregoire Sutre. 2002. LazyAbstraction. In Principles of Programming
Languages. ACM, 58–70.

Jan Hoffmann, Klaus Aehlig, and Martin Hofmann. 2011. Multivariate amortized resource analysis. In Principles of Program-
ming Languages. 357–370.

Jan Hoffmann and Martin Hofmann. 2010. Amortized resource analysis with polynomial potential. In European Symposium
on Programming. Springer, 287–306.

Martin Hofmann and Steffen Jost. 2003. Static prediction of heap space usage for first-order functional programs. ACM
SIGPLAN Notices 38, 1 (2003), 185–197.

Didier Ishimwe, Kim Hao Nguyen, and Thanhvu Nguyen. 2021. Software Artifact for the OOPSLA’21 Paper Titled "Dynaplex:
Analyzing Program Complexity using Dynamically Inferred Recurrence Relations". https://doi.org/10.5281/zenodo.5421762

Anirudh Jayaraman. 2015. KaratsubaMultiplicationAlgorithm - PythonCode. https://pythonandr.com/2015/10/13/karatsuba-

multiplication-algorithm-python-code/, accessed on September 8, 2021.

Zachary Kincaid, Jason Breck, Ashkan Forouhi Boroujeni, and Thomas Reps. 2017. Compositional recurrence analysis

revisited. ACM SIGPLAN Notices 52, 6 (2017), 248–262.
Zachary Kincaid, Jason Breck, John Cyphert, and Thomas Reps. 2019. Closed forms for numerical loops. Proceedings of the

ACM on Programming Languages 3, POPL (2019), 1–29.

Ton Chanh Le, Timos Antonopoulos, Parisa Fathololumi, Eric Koskinen, and ThanhVu Nguyen. 2020. DynamiTe: dynamic

termination and non-termination proofs. Proceedings of the ACM on Programming Languages 4, OOPSLA (2020), 1–30.

Ton Chanh Le, Guolong Zheng, and ThanhVu Nguyen. 2019. SLING: using dynamic analysis to infer program invariants in

separation logic. In Proceedings of the 40th ACM SIGPLANConference on Programming Language Design and Implementation.
788–801.

Caroline Lemieux, Rohan Padhye, Koushik Sen, and Dawn Song. 2018. Perffuzz: Automatically generating pathological

inputs. In Proceedings of the 27th ACM SIGSOFT International Symposium on Software Testing and Analysis. 254–265.
Xavier Leroy. 2006. Formal certification of a compiler back-end or: programming a compiler with a proof assistant. In

Principles of Programming Languages. ACM, 42–54.

Nicholas Nethercote and Julian Seward. 2003. Valgrind: A program supervision framework. Electronic notes in theoretical
computer science 89, 2 (2003), 44–66.

ThanhVu Nguyen, Timos Antonopoulos, Andrew Ruef, and Michael Hicks. 2017a. A Counterexample-guided Approach to

Finding Numerical Invariants. In Foundations of Software Engineering. ACM, 605–615.

ThanhVu Nguyen, Matthew Dwyer, and William Visser. 2017b. SymInfer: Inferring Program Invariants using Symbolic

States. In Automated Software Engineering. IEEE, 804–814.
ThanhVu Nguyen, Didier Ishimwe, Alexey Malyshev, Timos Antonopoulos, and Quoc-Sang Phan. 2020. Using dynamically

inferred invariants to analyze program runtime complexity. In Proceedings of the 3rd ACM SIGSOFT International Workshop
on Software Security from Design to Deployment. 11–14.

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 138. Publication date: October 2021.

https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/10.5281/zenodo.5421762
https://pythonandr.com/2015/10/13/karatsuba-multiplication-algorithm-python-code/
https://pythonandr.com/2015/10/13/karatsuba-multiplication-algorithm-python-code/

Analyzing Program Complexity using Dynamically Inferred Recurrence Relations 138:23

ThanhVu Nguyen, Deepak Kapur, Westley Weimer, and Stephanie Forrest. 2012. Using Dynamic Analysis to Discover

Polynomial and Array Invariants. In International Conference on Software Engineering. IEEE, 683–693.
Ocaml.org. 2021. 99 Problems in OCaml. https://ocaml.org/learn/tutorials/99problems.html, accessed on September 8, 2021.

Theofilos Petsios, Jason Zhao, Angelos D Keromytis, and Suman Jana. 2017. Slowfuzz: Automated domain-independent

detection of algorithmic complexity vulnerabilities. In Proceedings of the 2017 ACM SIGSAC Conference on Computer and
Communications Security. 2155–2168.

Moritz Sinn, Florian Zuleger, and Helmut Veith. 2014. A simple and scalable static analysis for bound analysis and amortized

complexity analysis. In International Conference on Computer Aided Verification. Springer, 745–761.
Moritz Sinn, Florian Zuleger, and Helmut Veith. 2017. Complexity and resource bound analysis of imperative programs

using difference constraints. Journal of automated reasoning 59, 1 (2017), 3–45.

Linhai Song and Shan Lu. 2014. Statistical debugging for real-world performance problems. ACM SIGPLAN Notices 49, 10
(2014), 561–578.

Akhilesh Srikanth, Burak Sahin, and William R Harris. 2017. Complexity verification using guided theorem enumeration.

ACM SIGPLAN Notices 52, 1 (2017), 639–652.
Termination Competitions. 2021. Complexity Benchmarks. https://termcomp.github.io/, accessed on September 8, 2021.

Di Wang and Jan Hoffmann. 2019. Type-guided worst-case input generation. Proceedings of the ACM on Programming
Languages 3, POPL (2019), 1–30.

Peng Wang, Di Wang, and Adam Chlipala. 2017. TiML: a functional language for practical complexity analysis with

invariants. Proceedings of the ACM on Programming Languages 1, OOPSLA (2017), 79.

Jianan Yao, Gabriel Ryan, Justin Wong, Suman Jana, and Ronghui Gu. 2020. Learning nonlinear loop invariants with gated

continuous logic networks. In Programming Language Design and Implementation. ACM, 106–120.

Dmitrijs Zaparanuks and Matthias Hauswirth. 2012. Algorithmic profiling. In Proceedings of the 33rd ACM SIGPLAN
conference on Programming Language Design and Implementation. 67–76.

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 138. Publication date: October 2021.

https://ocaml.org/learn/tutorials/99problems.html
https://termcomp.github.io/

	Abstract
	1 Introduction
	2 Overview
	2.1 Example
	2.2 Dynamic Inference

	3 Inferring Recurrences
	3.1 Learning Recurrence Relations
	3.2 Learning Polynomial Relations

	4 Solving Recurrences
	4.1 Solving Divide-and-Conquer Recurrences
	4.2 Solving Linear Recurrences

	5 Evaluation
	5.1 Benchmarks and Setup
	5.2 Dynaplex's Results
	5.3 Comparing to Others
	5.4 Discussion

	6 Related Works
	7 Conclusion
	References

