Localizing Configurations in Highly-Configurable Systems

Paul Gazzillo
Stevens Institute of Technology
paul@pgazz.com

ThanhVu Nguyen
University of Nebraska-Lincoln
tnguyen@cse.unl.edu

ABSTRACT

The complexity of configurable systems has grown immensely, and
it is only getting more complex. Such systems are a challenge for
software testing and maintenance, because bugs and other defects
can and do appear in any configuration. One common requirement
for many development tasks is to identify the configurations that
lead to a given defect or some other program behavior. We distill
this requirement down to a challenge question: given a program
location in a source file, what are valid configurations that include
the location? The key obstacle is scalability. When there are thou-
sands of configuration options, enumerating all combinations is
exponential and infeasible. We provide a set of target programs of
increasing difficulty and variations on the challenge question so
that submitters of all experience levels can try out solutions. Our
hope is to engage the community and stimulate new and interesting
approaches to the problem of analyzing configurations.

CCS CONCEPTS

« Software and its engineering — Software configuration man-
agement and version control systems; Software testing and de-

bugging;

KEYWORDS

Configurations, Variability, Program Analysis, Testing

1 INTRODUCTION

The complexity of configurable systems has grown immensely, and
it is only getting more complex. This complexity creates a great chal-
lenge for software testing and maintenance. Critical, widely-used
software, such as Linux, BusyBox, Firefox, and Apache, have mil-
lions or billions of configurations. While bugs can and do appear in
any configuration [1], there are simply too many configurations to
test them all separately. With the proliferation of Internet-of-things
devices, maintenance and testing highly-configurable systems are
even more essential, given the variety of devices using different
configurations of the same software.

Many aspects of software maintenance are impeded by config-
urability, including testing, localizing and repairing bugs, security
auditing, and finding code smells and dead code. All must apply
to every configuration of the system. One simple distillation of
these tasks is to identify interesting configurations: Given some
point of interest in a program, what are the configurations that reach
that point of interest? A point of interest can be a particular line,

Ugur Koc
University of Maryland, College Park
ukoc@cs.umd.edu

Shiyi Wei
University of Texas at Dallas
swei@utdallas.edu

file, program slice, bug, security violation, or some other subset of
program behavior. Ideally, we would like to discover the complete
space of configurations that reach the given point.

The ability to answer this question enables a developer to pin-
point relevant configurations when confronted with a defect or
when undertaking a maintenance task. For example, bugs in the
Linux kernel source code have been introduced inadvertently in
one configuration when making repairs to another [1]. Identifying
the configurations reaching a bug location will help localize the
source of these variability bugs.

Localizing configurations remains an open problem for several
reasons. The major challenge is scalability. For instance, the Linux
kernel has over 14,000 configuration options. There are more com-
binations of these options than the estimated number of atoms in
the universe! by many orders of magnitude. Further complicating
this issue is that not all combinations are valid configurations. For
instance, x86 platform options should be restricted when compil-
ing for an arm processor, and reasoning about these constraints is
computationally expensive.

Another important difficulty is that many systems often rely
on third-party software where the source code is unavailable. For
Internet-of-things devices, it may not be possible to obtain source
code or operating system details to analyze their configurations.
Furthermore, in systems with multiple, heterogeneous devices, it is
difficult to combine the configurations of each device into a cohesive
model.

Even when source code is available, build systems tend to be
ad-hoc. Each piece of software can implement its own build rules
and configuration options may not be explicitly documented. Con-
figurability can be implemented in many ways, sometimes using
custom solutions. For C systems, Makefiles and the preprocessor
are common options. These tools have difficult semantics, impeding
analysis, making a general solution to localizing configurations dif-
ficult to realize. For our challenge case, we focus on this build-time
configurability.

2 THE CHALLENGE

Given a specific program location in the source code, can

you apply automatic analysis techniques to find con-

crete configurations that include the program location

in question?
A program location is a source file name and a line number. A con-
crete configuration is a valid combination of configuration options

SPLC’18, 10-14 September, 2018, Gothenburg, Sweden
2018. https://doi.org/10.1145/nnnnnnn.nnnnnnn

Lhttps://www.wolframalpha.com/input/?i=estimated+number+of+atoms-+in+the+
universe

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://www.wolframalpha.com/input/?i=estimated+number+of+atoms+in+the+universe
https://www.wolframalpha.com/input/?i=estimated+number+of+atoms+in+the+universe

SPLC’18, 10-14 September, 2018, Gothenburg, Sweden

that can be used to build the target system. Since many configura-
tions may cover the intended program location, the ideal answer is a
compact characterization that captures all configurations covering
that location. This characterization may be expressed as a logical
formula that we can query to produce valid, concrete configurations
reaching the program location.

A naive solution to this challenge is to enumerate all possible
combinations of configuration options. Configuring and building
the system for each combination enables a search for those that
contain the target program location. This approach is not practi-
cal, even for small configurable systems, because it is exponential
in the number of configuration options. The axTLS web server,
for example, contains only 94 configuration options, but the naive
approach would require enumerating 2% configurations, an unre-
alistic proposition.

There are two categories of realistic approaches to solving this
challenge. Static analyses summarize configuration behavior by
analyzing the program source code, including its build system,
without executing the program. A purely static approach might
not be feasible when the system contains third-party libraries or
compiled code. Dynamic analyses run the program using a sample of
configurations, obtain execution traces, and use the traces to build
a model describing the configuration behavior. A purely dynamic
approach might not provide a precise model describing the complete
configuration space. A solution may need to combine both static
and dynamic approaches, particularly for very large systems.

Solution requirements. A valid solution will, for any line num-
ber or file name, be able to produce at least one concrete config-
uration that, when used to configure and build the target system,
includes the given program location. The quality of the solution
will be rated both on how often it provides a correct answer for
given program points as well as how thoroughly the answer covers
the space of configurations for the given program point.

To enable a wide audience to tackle the challenge, we provide a
range of difficulty levels with target systems of increasing complex-
ity. Submissions may also choose to find configurations that reach
a source file only instead of a program location, but are encouraged
to work towards the latter. They may also focus on finding a single
configuration or a partial space of configurations instead of the
complete space of configurations. These are the options for target
systems:

Easy We provide a benchmark consisting of C programs col-
lected from the variability bug database [1]?. The database
consists of programs derived from real-world bugs or other
defects, but they are very small and depend on a small num-
ber of configuration options such that a naive exhaustive
enumeration is possible. Our benchmark, given in the ac-
companying repository, is made more challenging, because
correct solutions should use the full set of configuration op-
tions given in option_list.txt. Thus, submitted solutions
should work with this set of options when identifying a
configuration, as described in the accompanying repository.
This dataset may also be useful as a proof-of-concept for
solution approaches other than the naive one.

Zhttp://vbdb.itu.dk/#search/

Paul Gazzillo, Ugur Koc, ThanhVu Nguyen, and Shiyi Wei

Medium The axTLS web server® is a relatively small config-
urable system. Even so it has enough configuration options,
94, to make exhaustive search infeasible.

Hard The BusyBox toolkit? provides a single executable con-
taining common GNU utilities. It is frequently used in em-
bedded systems such as routers to provide a rich operating
system with a small footprint. It has over a thousand config-
uration options.

Ultimate The Linux kernel source code® is arguably the most
complex, configurable open-source project; it contains over
14,000 configuration options, a nightmare for scalability.

Ground truth is not provided for the target systems, because finding
the ground truth is essentially equivalent to this very challenge.
In lieu of ground truth, submitters can validate the correctness
of their solution against the provided set of program locations by
configuring the target systems and checking for the existence of
the given program location. Instructions for obtaining source code,
lists of locations for each target system, and a description of the
input format are available in the accompanying repository for this

challenge:
https://github.com/paulgazz/splc18challengecase

Given the ad-hoc nature of real-world build system implemen-
tations, repurposing the solution program for new systems may
be tedious. Therefore the solution only needs to work on at least
one of the target systems of the submitter’s choice. For simplic-
ity, solutions may focus on Boolean configuration options, making
system-specific manual settings for non-Boolean options.

In your submission, please provide the following:

(1) Which target system(s) the tool supports.

(2) Whether your tool produces a single configuration per pro-
gram location or a space of configurations.

(3) Whether your tool can produce configurations for a source
file and line number or just a source file.

(4) The source code and easy-to-use instructions on building
and running the tool. A virtual machine prepared to build
and run the tool is a good option.

(5) Running time measurements for the tool on the given pro-
gram locations, including machine specifications.

(6) A script that runs the solution program for the given list(s)
of program locations from the repository.

Solution evaluation. We will evaluate solutions by measuring
how well the given program finds correct configurations of the
program locations for the supported target program(s) as well as
running time and resource usage®. For each program location, we
will query the solution program for a configuration, build the config-
uration (if the solution program produced one), and check whether
the program location is included. While a correct solution should
be able to determine when a given program location is unreachable,
we will only provide program locations that are reachable by some
configuration. Each solution will be measured with the following

3http://axtls.sourceforge.net/

*https://busybox.net/

Shttps://www.kernel.org/

%Please see the repository’s README.md file for specifications of the evaluation
machine and running time expectations.

http://vbdb.itu.dk/#search/
https://github.com/paulgazz/splc18challengecase
http://axtls.sourceforge.net/
https://busybox.net/
https://www.kernel.org/

Localizing Configurations in Highly-Configurable Systems

formulae:
.. Ncorrect
Precision= ——M8M8M8M8m8™
Neorrect + Nwrong
Ncorrect
Recal = ——M———
Neorrect + Nrmissed
Ncorrect
Accuracy = ———
Nan

N,1 is the total number of program locations we provide for a
given target system. Neorrect is the number correctly identified, i.e.,
the configurations that include the program location. Nyrong is
the number incorrectly identified, while Npjsseq is the number for
which the solution finds no configuration.

This pseudo-code describes how the above values will be com-
puted during evaluation:

for each program location do
ask the solution program to produce a .config;
if the solution program fails then
‘ Nhissed += 1;
else
build the .config;
if the program location is included then
‘ Neorrect +=1;
else
‘ Nyrong +=1;
end

end
end

»»»> d583¢7414446339663a6de13fd55f11954e9e426

For solution programs that produce a space of configurations,
rather than just a single configuration, we will test the configuration
space for correctness by sampling it and checking that all samples
include the program location. All samples must include the program
location to count towards N¢orrect, Otherwise the answer counts
towards Nwrong-

3 EXISTING TOOLS

Several existing tools analyze configurations in build systems and
source code and may be useful as inspiration or used as components
in a proposed solution. We have provided links to these tools in the
accompanying repository.

Kmax [15] collects build system configurations for Kbuild-style
Makefiles of the kind used in Linux and BusyBox. It uses static
analysis to derive a Boolean expression of configuration options.
KBuildMiner [4] also produces Boolean expressions for source files
built with Kbuild Makefiles. It uses a heuristic parsing technique
that trades off precision for speed. Makex takes a similar parsing
approach [24]. KconfigReader [17] converts constraints on configu-
ration options described in the Kbuild build system into Boolean
expressions. Dietrich et al. describe GOLEM [11], which uses a
dynamic approach to build system analysis, trying one or more
configuration variables at a time to see which C files are enabled.
GOLEM has been compared to other tools including KBuildMiner
and Makex to evaluate coverage [12]. All of the above techniques

SPLC’18, 10-14 September, 2018, Gothenburg, Sweden

consider only the build system, and do not inspect configurations
within source files. Several static approaches based on new parsing
algorithms exist to deal with preprocessor configurations within C
source files [14, 16, 18].

The iTree tool [32] uses dynamic analysis and machine learning
to construct an “interaction tree” and from the tree constructs con-
figurations achieving high coverage. The iGen tool [25] dynamically
infers interactions-logical formulae describing how configuration
settings map to code coverage. The tool employs an iterative al-
gorithm that runs the system, captures coverage data, processes
data to infer interactions, and then generates new configurations to
further refine interactions in the next iteration. The self-adaptive
REFRACT [33] architecture monitors software for bugs and gen-
erates configuration guards to avoid the observed bugs. REFRACT
works by monitoring a running program (e.g., Firefox), and when
the program encounters a bug, REFRACT analyzes configurations
encountered during the buggy run to create good configurations
that do not exhibit the bug and also constructs guards for the pro-
gram to avoid similar buggy behaviors.

Yilmaz et al. [37] describes several techniques and tools that
use covering arrays to generate configurations. The UNL’s CIT
portal” provides a family of tools for generating and checking
covering arrays using Simulated Annealing [7]. NIST’s Automated
Combinatorial Testing for Software® project provides ACTS [19] tool
as well as precomputed covering arrays for standard configuration
spaces.

4 RELATED WORK

Interaction discovery. Reisner et al. [29] developed the symbolic
executor, Otter, and used it to fully explore the configuration space
of a software system and extract interactions in conjunctive form.
Symbolic execution, however, has scalability limitations and it is
language specific. Consequently, several authors from the same
group have started to use dynamic analyses and producing the
aforementioned tools iTree and iGen that run much faster than
Otter.

Lillack et al. describe a system that uses static analysis to derive
a configuration map of source code [20]. Zhang and Ernst describe
a tool that combines dynamic and static analysis to help users
reconfigure a system undergoing software evolution [40]. Ouellet
et al. describe static techniques to localize configurations of source
code in avionics systems [28]. Several sampling approaches have
been studied for exploring configuration spaces to find optimal
configurations [22, 27, 31].

Feature interactions and presence conditions. Thiim et al [36] clas-
sify the feature interactions and presence conditions problems in
software product line research. Since then, there have been mul-
tiple attempts to address these problems. Apel et al. [3] study the
number of feature interactions in a system and their effects, includ-
ing bug triggering, power consumption, etc. Lillack et al. [21] use
(language-specific) taint analysis to find interactions in Android
applications. Nadi et al [23] and von Rhein et al. [30] present tools

"http://cse.unl.edu/~citportal
8https://csre.nist.gov/Projects/ Automated- Combinatorial- Testing- for-Software

http://cse.unl.edu/~citportal
https://csrc.nist.gov/Projects/Automated-Combinatorial-Testing-for-Software

SPLC’18, 10-14 September, 2018, Gothenburg, Sweden

that work with presence conditions that are already provided. Czar-
necki and Pietroszek [9] check for well-formedness errors in UML
featured-based model templates using an SAT solver.

Combinatorial interaction testing. Many researchers have ex-
plored combinatorial interaction testing (CIT) [6, 26, 34, 38], a
family of techniques for testing a program under a systematically
generated set of configurations. One particularly popular approach
is called t-way covering arrays which, given a coverage strength ¢,
generates a set of configurations containing all t-way combinations
of option settings at least once. Over the last 30 years, many studies
have focused on improving the speed, quality and flexibility of cov-
ering arrays [5, 8, 10, 13, 39]. Yilmaz et al. [37] used covering arrays
to detect and characterize variability bugs in complex configuration
spaces.

Build system analysis. As discussed in Section 3, several exist-
ing tools deal specifically with analyzing configurations in build
systems [4, 15, 17, 24]. In addition, Tamrawi et al. [35] developed
SYMake, a symbolic Makefile evaluator. SYMake generates a sym-
bolic dependency graph from Makefiles for use in identifying code
smells and in refactoring. Adams et al. [2] describe MAKAQO, a vi-
sualization tool for Makefile dependencies. It extracts a concrete
dependency graph for a single configuration.

ACKNOWLEDGMENTS

We would like to thank Julia Lawall for bringing up this challenge
problem and providing concrete instances of it for the Linux source
code.

REFERENCES

[1] Tago Abal, Claus Brabrand, and Andrzej Wasowski. 2014. 42 Variability Bugs in
the Linux Kernel: A Qualitative Analysis. In Proceedings of the 29th ACM/IEEE
International Conference on Automated Software Engineering (ASE °14). ACM, New
York, NY, USA, 421-432. https://doi.org/10.1145/2642937.2642990

[2] Bram Adams, Herman Tromp, Kris De Schutter, and Wolfgang De Meuter. 2007.
Design recovery and maintenance of build systems. In 23rd IEEE International
Conference on Software Maintenance (ICSM 2007), October 2-5, 2007, Paris, France.
114-123. https://doi.org/10.1109/ICSM.2007.4362624

[3] Sven Apel, Sergiy Kolesnikov, Norbert Siegmund, Christian Késtner, and Brady
Garvin. 2013. Exploring Feature Interactions in the Wild: The New Feature-
interaction Challenge. In Proceedings of the 5th International Workshop on Feature-
Oriented Software Development (FOSD ’13). ACM, New York, NY, USA, 1-8. https:
//doi.org/10.1145/2528265.2528267

[4] Thorsten Berger, Steven She, Rafael Lotufo, Krzysztof Czarnecki, and Andrzej
Wasowski. 2010. Feature-to-code Mapping in Two Large Product Lines. In
Proceedings of the 14th International Conference on Software Product Lines: Go-
ing Beyond (SPLC’10). Springer-Verlag, Berlin, Heidelberg, 498-499. http:
//dl.acm.org/citation.cfm?id=1885639.1885698

[5] Renée C. Bryce and Charles J. Colbourn. 2006. Prioritized interaction testing
for pair-wise coverage with seeding and constraints. Information and Software
Technology 48, 10 (Oct. 2006), 960-970. https://doi.org/10.1016/].infsof.2006.03.
004

[6] D. M. Cohen, S. R. Dalal, J. Parelius, and G. C. Patton. 1996. The combinatorial
design approach to automatic test generation. IEEE Software 13, 5 (Sept. 1996),
83-88. https://doi.org/10.1109/52.536462

[7] M.B. Cohen, Amanda Swearngin, Brady Garvin, Jacob Swanson, Justyna Petke,
Kaylei Burke, Katie Macias, Ronald Decker, Wayne Motycka, and Zhen and Wang.
[n. d.]. Combinatorial Interaction Testing Portal. ([n. d.]). http://cse.unl.edu/ cit-
portal, Accessed on 2018-01-16.

[8] M.B.Cohen, P.B. Gibbons, W. B. Mugridge, and C. J. Colbourn. 2003. Constructing

test suites for interaction testing. In 25th International Conference on Software

Engineering, 2003. Proceedings. 38-48. https://doi.org/10.1109/ICSE.2003.1201186

Krzysztof Czarnecki and Krzysztof Pietroszek. 2006. Verifying Feature-based

Model Templates Against Well-formedness OCL Constraints. In Proceedings of

the 5th International Conference on Generative Programming and Component

=

Paul Gazzillo, Ugur Koc, ThanhVu Nguyen, and Shiyi Wei

Engineering (GPCE *06). ACM, New York, NY, USA, 211-220. https://doi.org/10.

1145/1173706.1173738

Gulsen Demiroz and Cemal Yilmaz. 2012. Cost-aware combinatorial interaction

testing. In Proceedings of the Internatinoal Conference on Advances in System

Testing and Validation Lifecycles. 9-16.

Christian Dietrich, Reinhard Tartler, Wolfgang Schréder-Preikschat, and Daniel

Lohmann. 2012. A Robust Approach for Variability Extraction from the Linux

Build System. In Proceedings of the 16th International Software Product Line

Conference - Volume 1 (SPLC ’12). ACM, New York, NY, USA, 21-30. https:

//doi.org/10.1145/2362536.2362544

Christian Dietrich, Reinhard Tartler, Wolfgang Schroder-Preikshat, and Daniel

Lohmann. 2012. A robust approach for variability extraction from the Linux

build system. 21-30. http://doi.acm.org/10.1145/2362536.2362544

Emine Dumlu, Cemal Yilmaz, Myra B. Cohen, and Adam Porter. 2011. Feedback

Driven Adaptive Combinatorial Testing. In Proceedings of the 2011 International

Symposium on Software Testing and Analysis (ISSTA ’11). ACM, New York, NY,

USA, 243-253. https://doi.org/10.1145/2001420.2001450

Alejandra Garrido and Ralph Johnson. 2005. Analyzing Multiple Configurations

of a C Program. In Proceedings of the 21st IEEE International Conference on Software

Maintenance (ICSM 05). IEEE Computer Society, Washington, DC, USA, 379-388.

https://doi.org/10.1109/ICSM.2005.23

Paul Gazzillo. 2017. Kmax: Finding All Configurations of Kbuild Makefiles

Statically. In Proceedings of the 2017 11th Joint Meeting on Foundations of Software

Engineering (ESEC/FSE 2017). ACM, New York, NY, USA, 279-290. https://doi.

0rg/10.1145/3106237.3106283

Paul Gazzillo and Robert Grimm. 2012. SuperC: Parsing All of C by Taming the

Preprocessor. In Proceedings of the 33rd ACM SIGPLAN Conference on Programming

Language Design and Implementation (PLDI ’12). ACM, New York, NY, USA, 323-

334. https://doi.org/10.1145/2254064.2254103

Christian Késtner. 2016. KconfigReader. https://github.com/ckaestne/

kconfigreader. (2016). [Online; accessed 12-Jan-2018].

Christian Késtner, Paolo G. Giarrusso, Tillmann Rendel, Sebastian Erdweg, Klaus

Ostermann, and Thorsten Berger. 2011. Variability-aware Parsing in the Presence

of Lexical Macros and Conditional Compilation. In Proceedings of the 2011 ACM

International Conference on Object Oriented Programming Systems Languages

and Applications (OOPSLA ’11). ACM, New York, NY, USA, 805-824. https:

//doi.org/10.1145/2048066.2048128

[19] Author: Richard Kuhn (NIST), Author: Raghu Kacker (NIST), and Author: Yu

Lei (UTA). [n. d.]. Advanced Combinatorial Test Methods for System Re-

liability. ([n. d.]). https://csrc.nist.gov/publications/detail/journal-article/

2010/advanced-combinatorial-test-methods-for-system-reliability DOIL:
https://content.csrc.nist.gov/publications/detail/journal-article/2010/advanced-
combinatorial-test-methods-for-system-reliability.

Max Lillack, Christian Késtner, and Eric Bodden. 2014. Tracking Load-time Con-

figuration Options. In Proceedings of the 29th ACM/IEEE International Conference

on Automated Software Engineering (ASE '14). ACM, New York, NY, USA, 445-456.

https://doi.org/10.1145/2642937.2643001

M. Lillack, C. KAdstner, and E. Bodden. 2017. Tracking Load-time Configuration

Options. IEEE Transactions on Software Engineering PP, 99 (2017), 1-1. https:

//doi.org/10.1109/TSE.2017.2756048

[22] Flavio Medeiros, Christian Kastner, Marcio Ribeiro, Rohit Gheyi, and Sven Apel.

2016. A Comparison of 10 Sampling Algorithms for Configurable Systems. In

Proceedings of the 38th International Conference on Software Engineering (ICSE).

ACM Press, New York, NY, 643-654. https://doi.org/10.1145/2884781.2884793

S. Nadi, T. Berger, C. KAdstner, and K. Czarnecki. 2015. Where Do Configuration

Constraints Stem From? An Extraction Approach and an Empirical Study. IEEE

Transactions on Software Engineering 41, 8 (Aug. 2015), 820-841. https://doi.org/

10.1109/TSE.2015.2415793

[24] Sarah Nadi and Ric Holt. 2012. Mining Kbuild to Detect Variability Anomalies in

Linux. In Proceedings of the 2012 16th European Conference on Software Mainte-

nance and Reengineering (CSMR ’12). IEEE Computer Society, Washington, DC,

USA, 107-116. https://doi.org/10.1109/CSMR.2012.21

ThanhVu Nguyen, Ugur Koc, Javran Cheng, Jeffrey S. Foster, and Adam A. Porter.

2016. iGen: Dynamic Interaction Inference for Configurable Software. In Founda-

tions of Software Engineering (FSE). ACM, 655-665.

[26] Changhai Nie and Hareton Leung. 2011. A Survey of Combinatorial Testing.
ACM Comput. Surv. 43, 2 (Feb. 2011), 11:1-11:29. https://doi.org/10.1145/1883612.
1883618

[27] Jeho Oh, Don Batory, Margaret Myers, and Norbert Siegmund. 2017. Finding Near-

optimal Configurations in Product Lines by Random Sampling. In Proceedings

of the 2017 11th Joint Meeting on Foundations of Software Engineering (ESEC/FSE

2017). ACM, New York, NY, USA, 61-71. https://doi.org/10.1145/3106237.3106273

Maxime Ouellet, Ettore Merlo, Neset Sozen, and Martin Gagnon. 2012. Locating

Features in Dynamically Configured Avionics Software. In Proceedings of the

34th International Conference on Software Engineering (ICSE ’12). IEEE Press,

Piscataway, NJ, USA, 1453-1454. http://dl.acm.org/citation.cfm?id=2337223.

2337449

[10

[11

[12

[13

[14

[15

=
&

(17

[18

[20

[21

[23

[25

[28

https://doi.org/10.1145/2642937.2642990
https://doi.org/10.1109/ICSM.2007.4362624
https://doi.org/10.1145/2528265.2528267
https://doi.org/10.1145/2528265.2528267
http://dl.acm.org/citation.cfm?id=1885639.1885698
http://dl.acm.org/citation.cfm?id=1885639.1885698
https://doi.org/10.1016/j.infsof.2006.03.004
https://doi.org/10.1016/j.infsof.2006.03.004
https://doi.org/10.1109/52.536462
https://doi.org/10.1109/ICSE.2003.1201186
https://doi.org/10.1145/1173706.1173738
https://doi.org/10.1145/1173706.1173738
https://doi.org/10.1145/2362536.2362544
https://doi.org/10.1145/2362536.2362544
http://doi.acm.org/10.1145/2362536.2362544
https://doi.org/10.1145/2001420.2001450
https://doi.org/10.1109/ICSM.2005.23
https://doi.org/10.1145/3106237.3106283
https://doi.org/10.1145/3106237.3106283
https://doi.org/10.1145/2254064.2254103
https://github.com/ckaestne/kconfigreader
https://github.com/ckaestne/kconfigreader
https://doi.org/10.1145/2048066.2048128
https://doi.org/10.1145/2048066.2048128
https://csrc.nist.gov/publications/detail/journal-article/2010/advanced-combinatorial-test-methods-for-system-reliability
https://csrc.nist.gov/publications/detail/journal-article/2010/advanced-combinatorial-test-methods-for-system-reliability
https://doi.org/10.1145/2642937.2643001
https://doi.org/10.1109/TSE.2017.2756048
https://doi.org/10.1109/TSE.2017.2756048
https://doi.org/10.1145/2884781.2884793
https://doi.org/10.1109/TSE.2015.2415793
https://doi.org/10.1109/TSE.2015.2415793
https://doi.org/10.1109/CSMR.2012.21
https://doi.org/10.1145/1883612.1883618
https://doi.org/10.1145/1883612.1883618
https://doi.org/10.1145/3106237.3106273
http://dl.acm.org/citation.cfm?id=2337223.2337449
http://dl.acm.org/citation.cfm?id=2337223.2337449

Localizing Configurations in Highly-Configurable Systems

[29] Elnatan Reisner, Charles Song, Kin-Keung Ma, Jeffrey S. Foster, and Adam Porter.

[30

[31

[32

[33

[34

[35

[36

[37

[38

[39

[40

]

]

]

]

]

]

2010. Using Symbolic Evaluation to Understand Behavior in Configurable Soft-
ware Systems. In Proceedings of the 32Nd ACM/IEEE International Conference on
Software Engineering - Volume 1 (ICSE ’10). ACM, New York, NY, USA, 445-454.
https://doi.org/10.1145/1806799.1806864

A. v Rhein, A. Grebhahn, S. Apel, N. Siegmund, D. Beyer, and T. Berger. 2015.
Presence-Condition Simplification in Highly Configurable Systems. In 2015
IEEE/ACM 37th IEEE International Conference on Software Engineering, Vol. 1.
178-188. https://doi.org/10.1109/ICSE.2015.39

Norbert Siegmund, Stefan Sobernig, and Sven Apel. 2017. Attributed Variability
Models: Outside the Comfort Zone. In Proceedings of the 2017 11th Joint Meeting
on Foundations of Software Engineering (ESEC/FSE 2017). ACM, New York, NY,
USA, 268-278. https://doi.org/10.1145/3106237.3106251

Charles Song, Adam Porter, and Jeffrey S. Foster. 2012. iTree: Efficiently Discover-
ing High-coverage Configurations Using Interaction Trees. In Proceedings of the
34th International Conference on Software Engineering (ICSE ’12). IEEE Press, Pis-
cataway, NJ, USA, 903-913. http://dl.acm.org/citation.cfm?id=2337223.2337329
Jacob Swanson, Myra B. Cohen, Matthew B. Dwyer, Brady J. Garvin, and Justin
Firestone. 2014. Beyond the Rainbow: Self-adaptive Failure Avoidance in Config-
urable Systems. In Proceedings of the 22Nd ACM SIGSOFT International Symposium
on Foundations of Software Engineering (FSE 2014). ACM, New York, NY, USA,
377-388. https://doi.org/10.1145/2635868.2635915

Kuo-Chung Tai and Yu Lei. 2002. A test generation strategy for pairwise testing.
IEEE Transactions on Software Engineering 28, 1 (Jan. 2002), 109-111. https:
//doi.org/10.1109/32.979992

Ahmed Tamrawi, Hoan Anh Nguyen, Hung Viet Nguyen, and Tien N. Nguyen.
2012. Build Code Analysis with Symbolic Evaluation. In Proceedings of the 34th In-
ternational Conference on Software Engineering (ICSE '12). IEEE Press, Piscataway,
NJ, USA, 650-660. http://dl.acm.org/citation.cfm?id=2337223.2337300

Thomas ThAijm, Sven Apel, Christian Kistner, Martin Kuhlemann, Ina Schaefer,
and Gunter Saake. 2004. Analysis strategies for software product lines. (2004).
C. Yilmaz, M. B. Cohen, and A. A. Porter. 2006. Covering arrays for efficient fault
characterization in complex configuration spaces. IEEE Transactions on Software
Engineering 32, 1 (Jan. 2006), 20-34. https://doi.org/10.1109/TSE.2006.8

C. Yilmaz, S. FouchAl, M. B. Cohen, A. Porter, G. Demiroz, and U. Koc. 2014.
Moving Forward with Combinatorial Interaction Testing. Computer 47, 2 (Feb.
2014), 37-45. https://doi.org/10.1109/MC.2013.408

X. Yuan, M. B. Cohen, and A. M. Memon. 2011. GUI Interaction Testing: Incor-
porating Event Context. IEEE Transactions on Software Engineering 37, 4 (July
2011), 559-574. https://doi.org/10.1109/TSE.2010.50

Sai Zhang and Michael D. Ernst. 2014. Which Configuration Option Should I
Change?. In Proceedings of the 36th International Conference on Software Engineer-
ing (ICSE 2014). ACM, New York, NY, USA, 152-163. https://doi.org/10.1145/
2568225.2568251

SPLC’18, 10-14 September, 2018, Gothenburg, Sweden

https://doi.org/10.1145/1806799.1806864
https://doi.org/10.1109/ICSE.2015.39
https://doi.org/10.1145/3106237.3106251
http://dl.acm.org/citation.cfm?id=2337223.2337329
https://doi.org/10.1145/2635868.2635915
https://doi.org/10.1109/32.979992
https://doi.org/10.1109/32.979992
http://dl.acm.org/citation.cfm?id=2337223.2337300
https://doi.org/10.1109/TSE.2006.8
https://doi.org/10.1109/MC.2013.408
https://doi.org/10.1109/TSE.2010.50
https://doi.org/10.1145/2568225.2568251
https://doi.org/10.1145/2568225.2568251

	Abstract
	1 Introduction
	2 The Challenge
	3 Existing Tools
	4 Related Work
	References

