
Available

CAV
Evaluation

Artifact

Functional

CAV
Evaluation

Artifact

NeuralSAT: A High-Performance Verification Tool
for Deep Neural Networks

Hai Duong1 , ThanhVu Nguyen1 , and Matthew B. Dwyer2

1 George Mason University, USA
{hduong22,tvn}@gmu.edu

2 University of Virginia, USA
matthewbdwyer@virginia.edu

Abstract. Deep Neural Networks (DNNs) are increasingly deployed
in critical applications, where ensuring their safety and robustness is
paramount. We present NeuralSATCAV25, a high-performance DNN ver-
ification tool that uses the DPLL(T) framework and supports a wide-
range of network architectures and activation functions. Since its debut
in VNN-COMP’23, in which it achieved the New Participant Award and
ranked 4th overall, NeuralSATCAV25 has advanced significantly, achiev-
ing second place in VNN-COMP’24. This paper presents and evaluates
the latest development of NeuralSATCAV25, focusing on the versatility,
ease of use, and competitive performance of the tool. NeuralSATCAV25 is
available at: https://github.com/dynaroars/neuralsat.

Keywords: DNN Verification · Satisfiability Solving · VNN-COMP

1 Introduction

Deep Neural Networks (DNNs) have emerged as an effective approach for tack-
ling challenging real-world problems. However, just like traditional software,
DNNs can have “bugs”, e.g., producing unexpected results on inputs that are
different from those in training data, and be attacked, e.g., small perturbations
to the inputs by a malicious adversary or even sensor imperfections can result in
misclassification [25,40,37,39]. These issues naturally raise the question of how
DNNs should be tested, validated, and ultimately verified to meet the require-
ments of relevant robustness or safety standards [18].

To address this question, researchers have developed a wide variety of algo-
rithmic techniques and supporting tools to verify DNNs (§5). As a result, DNN
verification has become a vibrant research area, and the community has created
the annual DNN verification competition (VNN-COMP) to compare different
approaches, showcase the latest advances, and help shape future directions of
the field [5]. The first VNN-COMP was established in 2020, and the latest iter-
ation of the competition, VNN-COMP’24, was held with CAV in 2024.

Unlike research papers, which often focus on theoretical contributions and has
a smaller evaluation scale, VNN-COMP evaluates tools based on their practical
performance on a wide range of benchmarks and properties and thus attracts

https://doi.org/10.5281/zenodo.15306487
https://orcid.org/0000-0002-3341-9794
https://orcid.org/0000-0002-4255-4592
https://orcid.org/0000-0002-1937-1544
https://github.com/dynaroars/neuralsat


2 Duong et al.

the state-of-the-art in the field including: αβ-CROWN [32], Marabou [33] (successor
of Reluplex [19]), nnenum [3], and MN-BaB [15] (successor of ERAN [14]). Among
these tools, αβ-CROWN has been the most successful, winning the competitions
four consecutive times from VNN-COMP’21 to VNN-COMP’24.

In 2023, we introduced the NeuralSATVNNCOMP23
3 verification tool in VNN-

COMP’23 [6], where it ranked 4th overall and received the New Participation
award (and also won the “TLL Verify Bench” benchmark category). We intro-
duced several major improvements such as parallel DPLL(T) and neuron sta-
bilization optimization [13] to define NeuralSATFSE24, that demonstrated com-
petitive performance with αβ-CROWN on fully-connected networks. We extended
NeuralSATFSE24 to support much larger set of network layer and activation func-
tion types with NeuralSATVNNCOMP24, which participated in VNN-COMP’24,
where it ranked 2nd overall behind αβ-CROWN.

In this paper, we describe the latest version NeuralSATCAV25, which in-
cludes further extensions to optimize verification for more complex DNNs; the
paper also reports on the extensions in NeuralSATVNNCOMP24 that have not
been previously reported. We focus on features and engineering optimizations
in NeuralSATCAV25 that are essential for creating a high-performance tool. We
evaluate NeuralSATCAV25 in comparison to both NeuralSATVNNCOMP24 and the
latest versions αβ-CROWN, and we illustrate how NeuralSATCAV25 facilitates ease
of use by avoiding the complexities parameter tuning necessary in other verifiers.

Users of NeuralSATCAV25. We designed the NeuralSAT tool for (i) researchers
who want to experiment with DNN verification techniques, and (ii) practitioners
who want to verify their networks. For the first type of users, the DPLL(T)
framework, which is carefully designed to be modular and extensible, serves as a
foundation for incorporating additional algorithmic techniques from the broader
SMT and DNN reasoning literature. For the second type of users, NeuralSAT
works out of the box and supports various types of network architecture with
minimal configuration and tuning. Our goal is to create a high-performance yet
easy-to-use DNN verification tool that enables practitioners to employ state-of-
the-art DNN reasoning techniques.

2 Background and Overview

2.1 The DNN verification problem

Deep Neural Network (DNN). A deep neural network consists of an input
layer, multiple hidden layers, and an output layer. Each layer contains neurons
connected to neurons in previous layers via predefined weights obtained through
training with data. A fully-connected (FC) layer is a layer where each neuron is
connected to every neuron in the previous layer.
3 We use subscripts to distinguish previous versions of NeuralSATCAV25 from the ver-

sion discussed in this paper. We use NeuralSAT without a subscript when we refer
to the general NeuralSAT line of work.



NeuralSAT: A High-Performance Verification Tool for Deep Neural Networks 3

Boolean
Abstraction

DNN +
Property

BCP

Decide Restart

Deduce

Analyze-
Conflict

Select

SAT UNSAT

Fig. 1. NeuralSAT overview.

The output of a DNN is computed by iteratively calculating the values of
neurons in each layer. Neurons in the input layer receive the input data. Neu-
rons in the hidden layers compute their values through an affine transforma-
tion followed by an activation function, like the popular Rectified Linear Unit
(ReLU ) activation. For ReLU activation, the value of a hidden neuron y is
given by ReLU(w1v1 + . . . + wnvn + b), where b is the bias parameter for y,
wi, . . . , wn are the weights of y, v1, . . . , vn are the neuron values from the pre-
ceding layer, w1v1 + · · · + wnvn + b represents the affine transformation, and
ReLU(x) = max(x, 0) defines the ReLU activation. A ReLU-activated neuron is
active, if its input value is greater than zero, or inactive, otherwise.

DNN Verification. Given a DNN N and a property ϕ, the DNN verification
problem asks if ϕ is a valid property of N . Typically, ϕ is a formula of the form
ϕin ⇒ ϕout, where ϕin is a property over the inputs of N and ϕout is a property
over the outputs of N .

Modern techniques often treat the DNN verification as a satisfiability prob-
lem [12,33,13,32,15]. More specifically, given a formula α representing the ReLU-
based DNN N and the formulae ϕin ⇒ ϕout representing the property to be
proved, a DNN verifier checks the satisfiability of the formula

α ∧ ϕin ∧ ϕout. (1)

The verifier returns unsat if Eq. 1 is unsatisfiable, indicating that ϕ is a valid
property of N , and sat otherwise, indicating the ϕ is not a valid property of N .

2.2 Overview of NeuralSAT

Fig. 1 gives an overview of the NeuralSAT line of work, which is modeled after
the DPLL(T) framework in SMT solving [7,20]. NeuralSAT consists of standard



4 Duong et al.

DPLL components (non-shaded) and a theory or T-solver (shaded) dedicated
for DNN reasoning.

2.3 DPLL search

NeuralSAT treats DNN verification as a search for an activation pattern, repre-
sented as an assignment σ which maps truth values to the variables represent-
ing the activation status of neurons (BooleanAbstraction). In the beginning
σ is empty, and NeuralSAT uses decision heuristics to select unassigned vari-
ables (Select) and assigns truth values4 to them (Decide). Briefly, decision
heuristics in NeuralSAT work by selecting “important” neurons (or inputs) to
split. NeuralSAT has various decision heuristics to select and will use them in-
terchangeably depending on its optimizations. Currently, it implements greedy,
FSB (Filter Smart Branching) [9], and several heuristics based on neuron inter-
val values. Particularly, NeuralSAT will change decision heuristics when a reset
(discussed later) happens to create different selection orders to avoid the same
orders as previous runs.

After each assignment, NeuralSAT infers additional assignments caused by
the current assignment through Boolean constraint propagation(BCP). Next, it
invokes the T-solver (Deduce) to check the feasibility of the current assignment in
σ. If it is feasible, NeuralSAT continues to search for new assignments. Otherwise,
NeuralSAT detects a conflict, and it learns clauses to remember and backtracks
to a previous assignment (Analyze-Conflict).

This process repeats until NeuralSAT can no longer backtrack, at which point
it returns unsat, indicating the DNN has the property. Otherwise, it finds a com-
plete assignment for all Boolean variables (i.e., a satisfying activation pattern),
and returns sat. The user can query for a counterexample input in the case of
sat.

If the NeuralSAT search falls into a local optima, it will restart the search by
clearing all assignments that have been made. NeuralSAT retains learned con-
flict clauses learned, to avoid reaching the same state in the subsequent search.
NeuralSAT decides to restart when it reaches (i) a given number of verified
branches, (ii) a given number of unverified branches, or (iii) exceeds a timeout.
These indicate that NeuralSAT is likely stuck and needs restart.

2.4 NeuralSAT-specific Components

NeuralSAT follows the standard DPLL algorithm, but includes several compo-
nents specific for DNN reasoning [13].

T-Solver. To check that current assignments in σ is feasible with the the for-
mula in Eq. 1, the T-solver uses LP solving and polytope abstraction [17,36]
to compute neuron bounds from the given precondition and σ, and checks the
4 As described later, NeuralSAT uses a parallel DPLL and thus will explore both

branches of the decision.



NeuralSAT: A High-Performance Verification Tool for Deep Neural Networks 5

bounds are feasible with respect to the specified post-condition. Using LP solv-
ing and abstraction is standard in modern DNN verification tools [13,32,3,15]. In
practice, NeuralSAT employs several polytopes abstraction domains to support
a wide range of network types and sizes.

In addition to standard LP solving and abstraction, the T-solver implements
neuron stabilization [13] by creating and solving custom MILP constraints to
determine if a neuron is stable (i.e., it is always active or inactive). If a neuron is
stable, the T-solver does not need to guess its activation status, and thus reduces
the search space.

Parallel DPLL. NeuralSAT leverages multiprocessing to parallelize its DPLL
search. When assigning values to variables, NeuralSAT considers both options
(active or inactive) for each variable, and then splits the search space into two
disjoint subspaces and processes them in parallel. When a conflict is detected in
one subspace, NeuralSAT prunes that subspace and continues the search in the
remaining subspaces. This parallelism not only speeds up the process but also
facilitates information exchange such as learned clauses among search subspaces.

3 Implemented Features and Optimizations

Tab. 1. NeuralSAT’s features.

Feature Supported

Network Type Acyclic computation graphs, e.g., Feed-forward, Residual
Layer Type FC, CNN, MaxPool, BatchNorm, Softmax

Activation Function ReLU, Sigmoid, Tanh, Sign, Exp
Abstract Domain Polytope, Interval
Search Algorithm Parallel DPLL(T)

Hardware Multi-core CPU, GPU
Optimization Adv. Attacks, Input splitting, Large Output Opt., MILP solving

Property Robustness, Safety
Input Pytorch, ONNX, VNN-LIB

Output (sat, unsat, timeout), counter-examples

From our experience evaluating tools and participating in competitions, we
found that the novelty described in research papers often does not translate to
competitive performance or practical usability. Instead, the implementation de-
tails, such as being versatile, easy to use, and employing “engineering” optimiza-
tions to improve performance matter perhaps just as much. Tab. 1 shows fea-
tures of NeuralSAT, many of which are often overlooked in research papers (e.g.,
absent in [13]) but are critical for building a long-term and high-performance
tool.



6 Duong et al.

Versatility. The work in [13] focused on ReLU-based and fully-connected net-
works. NeuralSAT has since been extended to support a wide range of network
architectures and activation functions. Currently, NeuralSAT works with fully
connected (FC), convolutional (CNN), residual (ResNet), batch normalization
(BatchNorm) networks, etc. We also support mixtures of different types, e.g.,
VAEs which are large residual CNN-based networks.

In addition to ReLU, NeuralSAT supports other major activation functions
including sigmoid, tanh, and power. Briefly, for these non-ReLU activation func-
tions, we split a neuron at the center of its interval. Unlike ReLU where it
becomes linear after splitting, non-ReLU does not, so NeuralSAT splits a single
neuron multiple times, if needed, until the problem is verified or timed out.

Note that these are also supported by other DNN verification tools such
as αβ-CROWN though the LiRPA library [36]. However, it is straight-forward to
extend NeuralSAT to support new layer or activation functions, by modifying
the abstractions used in the T-solver to compute the approximation bounds of
activation functions over different network layers.

Standard Input and Output Formats. NeuralSAT supports for inputs net-
works in the standard ONNX format [2] and properties in VNNLIB format [28].
The output of NeuralSAT is reported as unsat (property proved), sat (property
disproved), or unknown and timeout (property cannot be proved). NeuralSAT
also generates counterexamples for sat results in text format supported by VNN-
COMPs.

Fully Automatic, but Configurable. An important decision in designing
NeuralSAT is to make it fully automatic and so that for end-users it “just works”,
perhaps even at the cost of some runtime. Users can simply apply NeuralSAT
to check their networks and desired properties without any parameter configu-
ration. For example, NeuralSAT runs on all VNN-COMP benchmarks with zero
tuning. In contrast, top tools, such as αβ-CROWN, require significant tuning to
perform effectively (more details in §4).

However, NeuralSAT has many settings that can be configured by the users,
such as the number of threads, number of restarts, timeout, etc. These options
are useful for experts who want to explore different settings and optimize the
performance of NeuralSAT for their specific problems.

Engineering Optimizations. Despite the focus on theoretical contributions in
research, engineering matters! NeuralSAT employs various engineering optimiza-
tions to improve performance. First, like most high performing DNN verifiers,
NeuralSAT uses adversarial attack algorithms, e.g., derivative-free sampling-
based [38] and gradient-based [22] methods, to quickly find counterexamples in-
dicating property violation. Second, NeuralSAT preprocesses and applies heuris-
tics that automatically select appropriate abstractions and algorithms based on
input network structures and properties. For example, NeuralSAT focuses on



NeuralSAT: A High-Performance Verification Tool for Deep Neural Networks 7

splitting the input ranges for networks with low input dimension and splitting
neurons for networks with many inputs (which are the majority of real-world
and VNN-COMP DNNs).

In this latest version, NeuralSATCAV25 has two new optimizations. First, for
networks with large outputs (e.g., networks in “Cifar100” benchmark with 100
outputs that often cause timeout due to heavy memory usage), NeuralSATCAV25
processes multiple output constraints at once and adjusts abstraction to compute
approximations that are less precise, but consume significantly less memory. Sec-
ond, for networks with small ReLU-based FC layers, NeuralSATCAV25 attempts
to solve the problem using MILP solving directly before using the more expensive
DPLL(T) search. §4 shows the improvements of these optimizations.

Commodity Hardware. NeuralSAT heavily leverages the power of modern
hardware, including multi-core CPUs and GPUs. The parallel search in NeuralSAT
uses multi-threading, allowing multiple search subspaces to be processed in par-
allel. A large part of the theory solver in NeuralSAT is implemented to run
on GPUs, which significantly speeds up the computation of neuron bounds.
While leveraging hardware is common in DNN verification, the implementation
is highly specific to the tool and requires careful engineering to achieve high
performance. In VNN-COMP’245, NeuralSAT was one of the fastest tools, often
outperforming other top competitors.

Well-Tested. NeuralSAT has been rigorously tested on a wide-range of bench-
marks, including those in VNN-COMPs and many more. In fact, the benchmarks
in VNN-COMP are often easy for NeuralSAT, and we actively seek out more
challenging benchmarks to test the tool’s capabilities, through our own bench-
mark generation research [35,34] and collaborations with other researchers and
industry partners.

Active Development. NeuralSAT is actively maintained with frequent up-
dates. If the tool does not support a specific problem or benchmark, users are
encouraged to open an issue on the project’s GitHub page6, and the team will
strive to provide assistance (though in practice people often send emails instead
of open Github issues). While the development version of NeuralSAT is quite
usable, we aim to release stable versions approximately every 6 months.

Extensibility. As mentioned, NeuralSAT has many optimizations, and their
addition was facilitated by the use of DPLL(T). The DPLL(T) framework in
NeuralSAT is modular and extensible, consisting of a small core search algo-
rithm and allows users to: add new decision or restart heuristics for DPLL, add
new adversarial attacks in preprocessing, or extend the T-solver with additional
5 VNN-COMP’24 no longer measures verification runtime and instead uses timeout.
6 https://github.com/dynaroars/neuralsat

https://github.com/dynaroars/neuralsat


8 Duong et al.

# Tool Score

1 αβ-CROWN 1200.0
2 NeuralSAT 1113.1
3 PyRAT 1000.8
4 Marabou 751.0
5 nnenum 572.5
6 NNV 530.0
7 CORA 439.5
8 NeVer2 262.3

 1

 10

 100

 500  1000  1500  2000

Five Minutes

T
im

e 
(s

ec
)

Number of Instances Verified

All Instances
AB-CROWN

NeuralSAT
PyRAT

Marabou
nnenum

NNV
Cora

Never2

Fig. 2. VNN-COMP’24 results (of NeuralSATVNNCOMP24) [5].

abstraction or optimizations for DNN analysis. For example, the neuron stabi-
lization optimization described in §2.2 is an independent function with fewer
than 100 SLOCs and integrated via a hook method call into the core DPLL
search. Similarly, heuristics are implemented as independent functions and can
be easily replaced or extended (e.g., in current implementation decisions and
restarts are less than 50 SLOC). NeuralSAT also uses the Gurobi LP solver as a
black box and thus can switch to different solvers, e.g, Xpress [16], dReal [11].

Building from Scratch Originally we considered building NeuralSAT on top
of well-known SAT or SMT solvers, such as MiniSat [26] or Z3 [8]. However,
we found that these solvers are not well-suited for DNN verification: their ar-
chitectures and optimizations that are not tailored for DNN reasoning. In our
experience, existing SAT/SMT solvers do not do well with logical constraints
or formulae representing DNN verification tasks and do not scale to anything
beyond the tiniest networks.

To address these limitations, we built NeuralSAT from the ground up as a
SAT solver, beginning with a standard DPLL algorithm (§2.3) and extending
it with a custom T-solver and specialized optimizations for DNN verification
tasks (§2.4). By designing our own solver, we can explore and experiment with
new heuristics and optimizations, and quickly add new features, without being
constrained by the limitations of existing solvers.

4 Evaluation

4.1 VNN-COMP’24 Results

Fig. 2 summarizes the results of VNN-COMP’24 [5]. The table in the Fig. corre-
sponds to Tab. 35 in Apdx. B of [5] and presents the overall scores and rankings of
the tools. The cactus plot corresponds Fig. 28 in Apdx. B of [5] and shows tool
performance on all benchmark instances. In summary, NeuralSATVNNCOMP24
ranks 2nd overall, behind αβ-CROWN and ahead of PyRAT.



NeuralSAT: A High-Performance Verification Tool for Deep Neural Networks 9

4.2 New Results

We present the results of the latest version of NeuralSATCAV25. We also com-
pare it with NeuralSATVNNCOMP24 and the latest version of αβ-CROWN7. As men-
tioned in §3, the main updates are better handling of networks with large outputs
and using MILP solving. We also compare NeuralSATCAV25 with αβ-CROWN’s
default configuration, αβ-CROWNdefault, to show that NeuralSATCAV25 is compet-
itive without any parameter tuning.

Setup. We reuse benchmarks and scripts for tool installation, execution, and
scoring from VNN-COMP’24 [5]. In total there are 340 networks (ranging from
0.2K to 68M parameters) and 2058 properties. For, αβ-CROWNdefault, we run the
script provided for αβ-CROWN without a specific configuration (YAML) file and
therefore uses its default settings. Details on the benchmarks and scoring system
are available in [5] and Github repo8.

Our experiments were run on a Linux machine with an AMD Threadrip-
per 64-core 4.2 GHz CPU, 128 GB RAM, and an NVIDIA GeForce RTX 4090
GPU with 24 GB VRAM. Because VNN-COMP’24 used Amazon AWS instances
which are different than our machine, we experimented with timeouts and settled
on 500 seconds per instance which allowed the verifiers to achieve similar scoring
performance as in VNN-COMP’24. All considered tools leverage multiprocessing
and GPU processing.

Results. Tab. 2 shows the results. We report the Rank (#) and % is the
percentage of solved problems over all problem instances of the corresponding
benchmark. The last two columns break down the number of problems each
verifier was able to verify and falsify. For example, for ACAS Xu, all tools
other than αβ-CROWNdefault were able to verify all 186 problems (139 + 47),
and αβ-CROWNdefault was only able to solve 113 problems (78 + 35), which is
60.8% of the total problems.

Overall, αβ-CROWN ranks 1st, followed closely by NeuralSATCAV25 in 2nd,
NeuralSATVNNCOMP24 in 3rd, and αβ-CROWNdefault last. For NeuralSATCAV25
and αβ-CROWN, the results are very close, with NeuralSATCAV25 verifying two
fewer problems than αβ-CROWN (1296 vs. 1298) and falsifying one fewer problem
(981 vs. 982). NeuralSATCAV25, with two new optimizations mentioned in §3, has
similar performance on most benchmarks and outperforms NeuralSATVNNCOMP24
on the remaining ones, with the most significant improvements in “Cifar100” and
“Tiny ImageNet” (due to large output optimization) and “Safe NLP” (due to
MILP solving).

The results show a significant performance disparity between αβ-CROWNdefault
and αβ-CROWN, with the latter having fine-tuned 10 parameters, on average, to

7 https://github.com/Verified-Intelligence/alpha-beta-CROWN_vnncomp2024/
commit/201f7401b3d8dbaddeda179939a8dc1615f8214a

8 https://github.com/ChristopherBrix/vnncomp2024_benchmarks

https://github.com/Verified-Intelligence/alpha-beta-CROWN_vnncomp2024/commit/201f7401b3d8dbaddeda179939a8dc1615f8214a
https://github.com/Verified-Intelligence/alpha-beta-CROWN_vnncomp2024/commit/201f7401b3d8dbaddeda179939a8dc1615f8214a
https://github.com/ChristopherBrix/vnncomp2024_benchmarks


10 Duong et al.

Tab. 2. Results over VNN-COMP’24 Benchmarks

Benchmark # Tool % Verify Falsify

ACAS Xu
1 αβ-CROWN 100.0% 139 47
1 NeuralSATCAV25 100.0% 139 47
1 NeuralSATVNNCOMP24 100.0% 139 47
4 αβ-CROWNdefault 60.8% 78 35

Cgan
1 αβ-CROWN 100.0% 8 13
1 NeuralSATCAV25 100.0% 8 13
1 NeuralSATVNNCOMP24 100.0% 8 13
4 αβ-CROWNdefault 33.3% 0 7

Cifar100
1 αβ-CROWN 77.5% 123 32
2 NeuralSATCAV25 76.5% 122 31
3 αβ-CROWNdefault 71.0% 110 32
4 NeuralSATVNNCOMP24 64.5% 98 31

Collins Rul CNN
1 αβ-CROWN 100.0% 30 32
1 αβ-CROWNdefault 100.0% 30 32
1 NeuralSATCAV25 100.0% 30 32
1 NeuralSATVNNCOMP24 100.0% 30 32

Cora
1 αβ-CROWN 43.9% 24 134
1 αβ-CROWNdefault 43.9% 24 134
1 NeuralSATCAV25 43.9% 24 134
1 NeuralSATVNNCOMP24 43.9% 24 134

Dist Shift
1 αβ-CROWN 100.0% 64 8
1 NeuralSATCAV25 100.0% 64 8
3 NeuralSATVNNCOMP24 98.6% 63 8
4 αβ-CROWNdefault 94.4% 60 8

Linearize NN
1 αβ-CROWN 100.0% 59 1
1 NeuralSATCAV25 100.0% 59 1
1 NeuralSATVNNCOMP24 100.0% 59 1
4 αβ-CROWNdefault 68.3% 40 1

Meta Room
1 αβ-CROWN 98.0% 91 7
1 NeuralSATCAV25 98.0% 91 7
1 NeuralSATVNNCOMP24 98.0% 91 7
4 αβ-CROWNdefault 0.0% 0 0

Nn4sys
1 αβ-CROWN 100.0% 194 0
1 NeuralSATCAV25 100.0% 194 0
1 NeuralSATVNNCOMP24 100.0% 194 0
4 αβ-CROWNdefault 4.1% 8 0

Safe NLP
1 αβ-CROWN 98.1% 411 648
1 NeuralSATCAV25 98.1% 411 648
3 αβ-CROWNdefault 96.9% 401 646
4 NeuralSATVNNCOMP24 94.3% 378 640

Tiny ImageNet
1 αβ-CROWN 91.5% 140 43
2 NeuralSATCAV25 91.0% 139 43
3 αβ-CROWNdefault 89.5% 136 43
4 NeuralSATVNNCOMP24 72.5% 102 43

TLL Verify Bench
1 αβ-CROWN 100.0% 15 17
1 NeuralSATCAV25 100.0% 15 17
1 NeuralSATVNNCOMP24 100.0% 15 17
4 αβ-CROWNdefault 65.6% 5 16

Overall
1 αβ-CROWN 88.8% 1298 982
2 NeuralSATCAV25 88.7% 1296 981
3 NeuralSATVNNCOMP24 84.7% 1201 973
4 αβ-CROWNdefault 71.9% 892 954



NeuralSAT: A High-Performance Verification Tool for Deep Neural Networks 11

optimize its performance for different benchmarks9. In contrast, NeuralSATCAV25
made no parameter adjustment for any benchmarks, highlighting its ease of use
and potential for better performance in unseen benchmarks.

5 Related Work

The literature on DNN verification is rich and rapidly evolving (cf. [31,21]). Here
we focus on tools competing in VNN-COMP’24 [5] because they are typically
the state of the art and combine multiple effective DNN verification techniques.

Several tools, including NeuralSAT, belong to the BaB approach, which re-
fines bounds computed for subproblems and then splits, or branches, them into
subproblems that are solved separately. Marabou [33] (the successor of the pop-
ular Reluplex work [19]) encodes verification as constraint problems and uses
parallelized split-and-conquer techniques for efficiency. nnenum [3] uses hidden
BaB with star sets and several types of zonotope abstractions and focuses strictly
on ReLU networks. The mentioned αβ-CROWN [32] combines GPU-accelerated
linear bound propagation with advanced BaB techniques, such as cutting planes
and neuron splitting, to scale to large networks. While both NeuralSAT and
αβ-CROWN use BaB and GPU acceleration, they differ widely in everything else,
e.g., heuristics and optimizations, with the main distinctions being NeuralSAT
prioritize splitting unstable neurons and have strategies borrowed from SAT
solving such as restart when it reaches local optima [13].

Other tools use reachability analysis, which overapproximates reachable states
to verify properties. CORA [1] employs zonotopes for non-convex enclosures for
open-loop and closed-loop verification in control systems. NeVer2 [10] focuses on
ReLU-based feedforward networks by using an abstraction-refinement algorithm
with symbolic bounds propagation. PyRAT [24] uses abstract interpretation with
many domains including intervals, zonotopes, and polyhedra to compute sound
overapproximations of reachable states to verify safe and robustness properties.
NNV [30] focuses on verifying network-based control systems by integrating the
star-set domain [29] with iteratively refinement for precise reachability analysis.

NeuralSAT achieves BaB through its DPLL(T) framework, which provides
a strong algorithmic foundation and the flexibility to explore new heuristics
and optimizations. NeuralSAT also delivers competitive performance out-of-the-
box–an advantage over tools that require significant parameter tuning for good
performance.

6 Conclusion and Future Work

NeuralSAT has quickly evolved into a leading performer in DNN verification,
achieving similar performance to established competitors like αβ-CROWN. By
9 https://github.com/Verified-Intelligence/alpha-beta-CROWN_vnncomp2024/

blob/master/complete_verifier/exp_configs/vnncomp24/ partially consists of
VNN-COMP’24 runscripts of αβ-CROWN, which use different configurations (in
yaml) on different benchmarks.

https://github.com/Verified-Intelligence/alpha-beta-CROWN_vnncomp2024/blob/master/complete_verifier/exp_configs/vnncomp24/
https://github.com/Verified-Intelligence/alpha-beta-CROWN_vnncomp2024/blob/master/complete_verifier/exp_configs/vnncomp24/


12 Duong et al.

adopting modular and extensible designs, parallel DPLL(T) search, and ad-
vanced optimizations, NeuralSAT performs competitively across a diverse set
of benchmarks, demonstrating its robustness and scalability. Its out-of-the-box
usability, combined with its potential for further optimization and customization,
make it an attractive choice for both researchers and practitioners.

Maintaining competitiveness in the world of rapid advancements requires
continuous innovation in both algorithmic research and engineering advance-
ments. We are exploring both algorithmic research, such as compositional rea-
soning [23,27], which decomposes large verification to more manageable sub-
problems, and decision heuristics from DPLL, such as VMTF (Variable Move-
to-Front) [4], which prioritize variables involved in learned conflict clauses to
improve search efficiency, and engineering improvements, such as enhancing par-
allelization and supporting multi-GPU hardware acceleration.

Acknowledgments. This material is based in part upon work supported by the
National Science Foundation under grant numbers 2019239, 2129824, 2200621,
2217071, 2238133, 2319131, 2422036, and by an Amazon Research Award.

Disclosure of Interests. The authors have no competing interests to declare
that are relevant to the content of this article.

References

1. Althoff, M.: An introduction to cora 2015. In: Proc. of the workshop on applied
verification for continuous and hybrid systems. pp. 120–151 (2015). https://doi.
org/10.29007/zbkv

2. Bai, J., Lu, F., Zhang, K.: ONNX Open neural network exchange, https://onnx.ai
3. Bak, S.: nnenum: Verification of ReLU Neural Networks with Optimized Abstrac-

tion Refinement. In: NASA Formal Methods Symposium. pp. 19–36. Springer
(2021). https://doi.org/10.1007/978-3-030-76384-8_2

4. Biere, A., Fr"ohlich, A.: Evaluating cdcl variable scoring schemes. In: Theory and
Applications of Satisfiability Testing–SAT 2015: 18th International Conference,
Austin, TX, USA, September 24-27, 2015, Proceedings 18. pp. 405–422. Springer
(2015). https://doi.org/10.1007/978-3-319-24318-4_29

5. Brix, C., Bak, S., Johnson, T.T., Wu, H.: The Fifth International Verification of
Neural Networks Competition (VNN-COMP 2024): Summary and Results. arXiv
preprint arXiv:2412.19985 (2024). https://doi.org/10.48550/arXiv.2412.19985

6. Brix, C., Bak, S., Liu, C., Johnson, T.T.: The Fourth International Verification of
Neural Networks Competition (VNN-COMP 2023): Summary and Results (2023).
https://doi.org/10.48550/arXiv.2312.16760

7. Davis, M., Logemann, G., Loveland, D.: A machine program for theorem-proving.
Communications of the ACM 5(7), 394–397 (1962), https://dl.acm.org/doi/10.
1145/368273.368557

8. De Moura, L., Bjørner, N.: Z3: An efficient smt solver. In: International conference
on Tools and Algorithms for the Construction and Analysis of Systems. pp. 337–
340. Springer (2008). https://doi.org/10.1007/978-3-540-78800-3_24

https://doi.org/10.29007/zbkv
https://doi.org/10.29007/zbkv
https://doi.org/10.29007/zbkv
https://doi.org/10.29007/zbkv
https://onnx.ai
https://doi.org/10.1007/978-3-030-76384-8_2
https://doi.org/10.1007/978-3-030-76384-8_2
https://doi.org/10.1007/978-3-319-24318-4_29
https://doi.org/10.1007/978-3-319-24318-4_29
https://doi.org/10.48550/arXiv.2412.19985
https://doi.org/10.48550/arXiv.2412.19985
https://doi.org/10.48550/arXiv.2312.16760
https://doi.org/10.48550/arXiv.2312.16760
https://dl.acm.org/doi/10.1145/368273.368557
https://dl.acm.org/doi/10.1145/368273.368557
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1007/978-3-540-78800-3_24


NeuralSAT: A High-Performance Verification Tool for Deep Neural Networks 13

9. De Palma, A., Bunel, R., Desmaison, A., Dvijotham, K., Kohli, P., Torr, P.H.,
Kumar, M.P.: Improved branch and bound for neural network verification via la-
grangian decomposition. arXiv preprint arXiv:2104.06718 (2021). https://doi.org/
10.48550/arXiv.2104.06718

10. Demarchi, S., Guidotti, D., Pulina, L., Tacchella, A.: Never2: learning and veri-
fication of neural networks. Soft Computing 28(19), 11647–11665 (2024). https:
//doi.org/10.1007/s00500-024-09907-5

11. dreal: An SMT Solver for Nonlinear Theories of Reals (2024), https://dreal.github.
io/

12. Duong, H., Nguyen, T., Dwyer, M.: A DPLL(T) Framework for Verifying Deep
Neural Networks. arXiv preprint arXiv:2307.10266 (2024). https://doi.org/10.
48550/arXiv.2307.10266

13. Duong, H., Xu, D., Nguyen, T., Dwyer, M.B.: Harnessing neuron stability to im-
prove dnn verification. Proceedings of the ACM on Software Engineering 1(FSE),
859–881 (2024). https://doi.org/10.1145/3643765

14. ETH-SRI: ETH Robustness Analyzer for Deep Neural Networks (2021), https:
//github.com/eth-sri/eran

15. Ferrari, C., Mueller, M.N., Jovanović, N., Vechev, M.: Complete Verification via
Multi-Neuron Relaxation Guided Branch-and-Bound. In: International Conference
on Learning Representations (2022). https://doi.org/10.48550/arXiv.2205.00263

16. FICO: Xpress Optimization (2024), https://www.fico.com/en/products/
fico-xpress-optimization

17. Gurobi Optimization, LLC: Gurobi Optimizer Reference Manual (2022), https:
//www.gurobi.com

18. Huang, X., Kroening, D., Ruan, W., Sharp, J., Sun, Y., Thamo, E., Wu, M., Yi,
X.: A survey of safety and trustworthiness of deep neural networks: Verification,
testing, adversarial attack and defence, and interpretability. Computer Science
Review 37, 100270 (2020). https://doi.org/10.1016/j.cosrev.2020.100270

19. Katz, G., Barrett, C., Dill, D.L., Julian, K., Kochenderfer, M.J.: Reluplex: An
efficient SMT solver for verifying deep neural networks. In: International Con-
ference on Computer Aided Verification. pp. 97–117. Springer (2017). https:
//doi.org/10.1007/978-3-319-63387-9_5

20. Kroening, D., Strichman, O.: Decision procedures. Springer (2008), https://dl.acm.
org/doi/10.5555/1391237

21. Liu, C., Arnon, T., Lazarus, C., Strong, C., Barrett, C., Kochenderfer, M.J., et al.:
Algorithms for verifying deep neural networks. Foundations and Trends® in Op-
timization 4(3-4), 244–404 (2021). https://doi.org/10.1561/2400000035

22. Madry, A., Makelov, A., Schmidt, L., Tsipras, D., Vladu, A.: Towards deep learning
models resistant to adversarial attacks. arXiv preprint arXiv:1706.06083 (2017),
https://hdl.handle.net/1721.1/137496

23. Misra, J., Chandy, K.M.: Proofs of networks of processes. IEEE transactions
on software engineering pp. 417–426 (1981). https://doi.org/10.1109/TSE.1981.
230844

24. PyRAT: A tool to analyze the robustness and safety of neural networks (2024),
https://pyrat-analyzer.com/

25. Ren, K., Zheng, T., Qin, Z., Liu, X.: Adversarial Attacks and Defenses in Deep
Learning. Engineering 6(3), 346–360 (2020). https://doi.org/10.1016/j.eng.2019.
12.012

26. Sorensson, N., Een, N.: Minisat v1. 13-a sat solver with conflict-clause minimiza-
tion. SAT 2005(53), 1–2 (2005)

https://doi.org/10.48550/arXiv.2104.06718
https://doi.org/10.48550/arXiv.2104.06718
https://doi.org/10.48550/arXiv.2104.06718
https://doi.org/10.48550/arXiv.2104.06718
https://doi.org/10.1007/s00500-024-09907-5
https://doi.org/10.1007/s00500-024-09907-5
https://doi.org/10.1007/s00500-024-09907-5
https://doi.org/10.1007/s00500-024-09907-5
https://dreal.github.io/
https://dreal.github.io/
https://doi.org/10.48550/arXiv.2307.10266
https://doi.org/10.48550/arXiv.2307.10266
https://doi.org/10.48550/arXiv.2307.10266
https://doi.org/10.48550/arXiv.2307.10266
https://doi.org/10.1145/3643765
https://doi.org/10.1145/3643765
https://github.com/eth-sri/eran
https://github.com/eth-sri/eran
https://doi.org/10.48550/arXiv.2205.00263
https://doi.org/10.48550/arXiv.2205.00263
https://www.fico.com/en/products/fico-xpress-optimization
https://www.fico.com/en/products/fico-xpress-optimization
https://www.gurobi.com
https://www.gurobi.com
https://doi.org/10.1016/j.cosrev.2020.100270
https://doi.org/10.1016/j.cosrev.2020.100270
https://doi.org/10.1007/978-3-319-63387-9_5
https://doi.org/10.1007/978-3-319-63387-9_5
https://doi.org/10.1007/978-3-319-63387-9_5
https://doi.org/10.1007/978-3-319-63387-9_5
https://dl.acm.org/doi/10.5555/1391237
https://dl.acm.org/doi/10.5555/1391237
https://doi.org/10.1561/2400000035
https://doi.org/10.1561/2400000035
https://hdl.handle.net/1721.1/137496
https://doi.org/10.1109/TSE.1981.230844
https://doi.org/10.1109/TSE.1981.230844
https://doi.org/10.1109/TSE.1981.230844
https://doi.org/10.1109/TSE.1981.230844
https://pyrat-analyzer.com/
https://doi.org/10.1016/j.eng.2019.12.012
https://doi.org/10.1016/j.eng.2019.12.012
https://doi.org/10.1016/j.eng.2019.12.012
https://doi.org/10.1016/j.eng.2019.12.012


14 Duong et al.

27. Stark, E.W.: A proof technique for rely/guarantee properties. In: Foundations of
Software Technology and Theoretical Computer Science: Fifth Conference, New
Delhi, India December 16–18, 1985 Proceedings 5. pp. 369–391. Springer (1985).
https://doi.org/10.1007/3-540-16042-6_21

28. Tacchella, A., Pulina, L., Guidotti, D., Demarchi, S.: The international benchmarks
standard for the Verification of Neural Networks (2023), https://www.vnnlib.org/

29. Tran, H.D., Manzanas Lopez, D., Musau, P., Yang, X., Nguyen, L.V., Xiang, W.,
Johnson, T.T.: Star-Based Reachability Analysis of Deep Neural Networks. In:
International symposium on formal methods. pp. 670–686. Springer (2019). https:
//doi.org/10.1007/978-3-030-30942-8_39

30. Tran, H.D., Yang, X., Manzanas Lopez, D., Musau, P., Nguyen, L.V., Xiang,
W., Bak, S., Johnson, T.T.: Nnv: the neural network verification tool for deep
neural networks and learning-enabled cyber-physical systems. In: International
Conference on Computer Aided Verification. pp. 3–17. Springer (2020). https:
//doi.org/10.1007/978-3-030-53288-8_1

31. Urban, C., Miné, A.: A review of formal methods applied to machine learning. arXiv
preprint arXiv:2104.02466 (2021). https://doi.org/10.48550/arXiv.2104.02466

32. Wang, S., Zhang, H., Xu, K., Lin, X., Jana, S., Hsieh, C.J., Kolter, J.Z.: Beta-
CROWN: Efficient Bound Propagation with Per-neuron Split Constraints for Com-
plete and Incomplete Neural Network Robustness Verification. Advances in Neu-
ral Information Processing Systems 34, 29909–29921 (2021). https://doi.org/10.
48550/arXiv.2103.06624

33. Wu, H., Isac, O., Zeljić, A., Tagomori, T., Daggitt, M., Kokke, W., Refaeli, I.,
Amir, G., Julian, K., Bassan, S., et al.: Marabou 2.0: a versatile formal analyzer
of neural networks. In: International Conference on Computer Aided Verification.
pp. 249–264. Springer (2024). https://doi.org/10.48550/arXiv.2401.14461

34. Xu, D., Mozumder, N.J., Duong, H., Dwyer, M.: Training for verification: In-
creasing neuron stability to scale DNN verification. In: Tools and Algorithms
for the Construction and Analysis of Systems - 30th International Conference,
TACAS 2024, Held as Part of the European Joint Conferences on Theory and
Practice of Software, ETAPS. p. to appear. Springer (2024). https://doi.org/10.
1007/978-3-031-57256-2_2

35. Xu, D., Shriver, D., Dwyer, M.B., Elbaum, S.: Systematic Generation of Di-
verse Benchmarks for DNN Verification. In: International Conference on Com-
puter Aided Verification. pp. 97–121. Springer (2020). https://doi.org/10.1007/
978-3-030-53288-8_5

36. Xu, K., Shi, Z., Zhang, H., Wang, Y., Chang, K.W., Huang, M., Kailkhura, B., Lin,
X., Hsieh, C.J.: Automatic perturbation analysis for scalable certified robustness
and beyond. Advances in Neural Information Processing Systems 33, 1129–1141
(2020), https://dl.acm.org/doi/10.5555/3495724.3495820

37. Yang, Z., Shi, J., He, J., Lo, D.: Natural attack for pre-trained models of code.
In: Proceedings of the 44th International Conference on Software Engineering. pp.
1482–1493 (2022). https://doi.org/10.1145/3510003.3510146

38. Yu, Y., Qian, H., Hu, Y.Q.: Derivative-free optimization via classification. In: Thir-
tieth AAAI Conference on Artificial Intelligence (2016), https://dl.acm.org/doi/
10.5555/3016100.3016218

39. Zhang, T., Gao, C., Ma, L., Lyu, M., Kim, M.: An empirical study of common
challenges in developing deep learning applications. In: 2019 IEEE 30th Interna-
tional Symposium on Software Reliability Engineering (ISSRE). pp. 104–115. IEEE
(2019). https://doi.org/10.1109/ISSRE.2019.00020

https://doi.org/10.1007/3-540-16042-6_21
https://doi.org/10.1007/3-540-16042-6_21
https://www.vnnlib.org/
https://doi.org/10.1007/978-3-030-30942-8_39
https://doi.org/10.1007/978-3-030-30942-8_39
https://doi.org/10.1007/978-3-030-30942-8_39
https://doi.org/10.1007/978-3-030-30942-8_39
https://doi.org/10.1007/978-3-030-53288-8_1
https://doi.org/10.1007/978-3-030-53288-8_1
https://doi.org/10.1007/978-3-030-53288-8_1
https://doi.org/10.1007/978-3-030-53288-8_1
https://doi.org/10.48550/arXiv.2104.02466
https://doi.org/10.48550/arXiv.2104.02466
https://doi.org/10.48550/arXiv.2103.06624
https://doi.org/10.48550/arXiv.2103.06624
https://doi.org/10.48550/arXiv.2103.06624
https://doi.org/10.48550/arXiv.2103.06624
https://doi.org/10.48550/arXiv.2401.14461
https://doi.org/10.48550/arXiv.2401.14461
https://doi.org/10.1007/978-3-031-57256-2_2
https://doi.org/10.1007/978-3-031-57256-2_2
https://doi.org/10.1007/978-3-031-57256-2_2
https://doi.org/10.1007/978-3-031-57256-2_2
https://doi.org/10.1007/978-3-030-53288-8_5
https://doi.org/10.1007/978-3-030-53288-8_5
https://doi.org/10.1007/978-3-030-53288-8_5
https://doi.org/10.1007/978-3-030-53288-8_5
https://dl.acm.org/doi/10.5555/3495724.3495820
https://doi.org/10.1145/3510003.3510146
https://doi.org/10.1145/3510003.3510146
https://dl.acm.org/doi/10.5555/3016100.3016218
https://dl.acm.org/doi/10.5555/3016100.3016218
https://doi.org/10.1109/ISSRE.2019.00020
https://doi.org/10.1109/ISSRE.2019.00020


NeuralSAT: A High-Performance Verification Tool for Deep Neural Networks 15

40. Zügner, D., Akbarnejad, A., Günnemann, S.: Adversarial Attacks on Neural Net-
works for Graph Data. In: Proceedings of the 24th ACM SIGKDD International
Conference on Knowledge Discovery & Data Mining. vol. 2019-Augus, pp. 2847–
2856. ACM, New York, NY, USA (jul 2018). https://doi.org/10.1145/3219819.
3220078

https://doi.org/10.1145/3219819.3220078
https://doi.org/10.1145/3219819.3220078
https://doi.org/10.1145/3219819.3220078
https://doi.org/10.1145/3219819.3220078

	NeuralSAT: A High-Performance Verification Tool for Deep Neural Networks

