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Abstract—Proof assistants such as Coq and LEAN have been
increasingly used by renowned mathematicians to formalize
and prove mathematical theorems. Despite their growing use,
writing formal proofs is challenging, and even the first step of
stating the problem formally is difficult as it requires a deep
understanding of these systems’ languages. Recent advancements
in AI, especially large language models (LLMs), have shown
promise in automating this formalization task. However, domains
such as combinatorics pose significant challenges for AI-assisted
proof assistant systems due to their cryptic nature and the lack of
existing data to train AI models. We introduce AutoForm4Lean,
a system designed to leverage LLMs to aid in formalizing
combinatorics problems for LEAN. By combining LLMs with
techniques from software engineering and formal methods such
as validation and synthesis, AutoForm4Lean generates formal-
izations of combinatorics problems more effectively than the
current state-of-the-art LLMs. Moreover, this project seeks to
provide a comprehensive collection of formalized combinatorics
problems, theorems, and lemmas, which would enrich the LEAN
library and provide valuable training data for LLMs. Preliminary
results demonstrate the effectiveness of AutoForm4Lean in
formalizing combinatorics problems in LEAN, making a step
forward in AI-based theorem proving.

Index Terms—Proof assistants, Autoformalization, Combina-
torics, AI, LLM, Lean

I. INTRODUCTION

Proof assistants such as Coq [1] and LEAN [2] have been
used to formalize and verify many well-known mathemat-
ical theorems. Celebrated achievements include using Coq
to establish the classical Four Color Theorem [3] and more
recently using LEAN to formalize and prove the Polynomial
Freiman-Ruzsa conjecture [4], specialized theorems in the
Liquid tensor experiment [5], and many more [6]. Once
mainly developed for program reasoning, proof assistants—
the poster child of formal methods, software engineering,
and programming languages—have now been adopted and
encouraged by the mathematical community, with many users
being Fields Medalists, e.g., Terence Tao, Vladimir Voevodsky,
Peter Scholze, and Kevin Buzzard.

However, similarly to writing programs, writing formal
proofs can be challenging as it requires a deep understanding
of the proof assistant’s language, which can be cryptic and
unfamiliar to many users. In recent years, the advent of large
language models (LLMs) in AI/ML has led to significant
advancements in software engineering (SE) and formal method
(FM) techniques, e.g., aiding program analysis, verification,

and synthesis [7]–[10]. Unsurprisingly, researchers have lever-
aged LLMs to enhance proof assistants, e.g., by automating
proof generation [11], [12]. Various projects [13]–[16] have in-
tegrated AI, e.g., as “copilot”, to assist mathematicians in using
LEAN. Most recently, the new AlphaProof and AlphaGeom-
etry systems from Google DeepMind combine LEAN with
reinforcement learning to solve four out of six problems at
the 2024 International Math Olympiad (IMO) [17], becoming
a major milestone in the field of AI-assisted theorem proving.

Despite much progress in using AI+SE/FM in various math-
ematical domains including number theory, algebra, and ge-
ometry, domains such as combinatorics (e.g., subset counting
and graph theory) remain challenging for AI-assisted theorem
proving. For example, the two IMO problems that AlphaProof
and AlphaGeometry failed to solve were combinatorics prob-
lems. Combinatorics is of course fundamental in math and
computer science and has applications in cryptography, coding
theory, and optimization [18]–[20]. However, while properties
and theorems in combinatorics are easy to state informally
(e.g., in English), they are notoriously difficult to formalize,
even when done manually by human experts. For example,
while the mathlib library [21] in LEAN has successfully for-
malized many major concepts in algebra, calculus, and topol-
ogy, its collection of theorems and lemmas in combinatorics
is underdeveloped and misses major combinatorics concepts
including generating functions and recurrence relations. This
limitation not only hinders using combinatorics in LEAN, but
it also makes it difficult to develop sufficient training data for
using AI to assist in combinatorics theorem proving.

In this NIER paper, we propose a new system, Auto-
Form4Lean, that leverages LLMs to assist in formalizing
combinatorics problems in the LEAN proof assistant. Auto-
Form4Lean combines the power of LLMs with SE/FM tech-
niques (e.g., synthesis, bug fixing, and counterexample genera-
tion) to synthesize, validate, and refine formalizations of com-
binatorics problems. We have developed a AutoForm4Lean
prototype, and preliminary results show that AutoForm4Lean
can generate correct formalizations of combinatorics problems
with a much higher success rate than existing LLM-based
systems.

In addition to automatically formalizing combinatorics
problems, the AutoForm4Lean project aims to provide a
new dataset of combinatorics problems in LEAN to help train



LLMs to better understand this mathematical domain. We will
contribute our results to the LEAN community, e.g., to enrich
its mathlib library with formalized combinatorics concepts
and theorems.

II. BACKGROUND AND EXAMPLE

Consider the example in Fig. 1, in which we want to
translate the combinatorial statement on the number of subsets
fitting a criterion (left-hand side) to a proper LEAN statement.
To achieve this, our proposed system, AutoForm4Lean, uses
a combination of LLM and LEAN to iteratively generate and
refine candidate formalizations, and then check for correctness.

A. Autoformalizing

Autoformalization, the task of automatically translating
statements into proper syntax for proof assistant, is a well-
known problem in the literature [16], [22]–[24]. Unsurpris-
ingly, recent and state-of-the-art autoformalization techniques
leverage LLM to synthesize such statements (e.g., [24], [25]
for LEAN). However, despite the many successes, such ap-
proaches do not work well with combinatorics problems. For
instance, we apply the latest LLM GPT-4o [26] from OpenAI
(the maker of ChatGPT) to our counting example and ask
it to candidate statements in LEAN. Out of 64 candidates
generated, 61 do not compile correctly (due to various forms
of syntax or notation errors), and only three (4.7%) are
syntactically correct.

Writing syntactically correct formulation is similar to a
programmer writing code that does not compile correctly, in
which case they will look at the compiler error messages
(e.g., incorrect type on line X), make the appro-
priate fixes, and repeat until the program is compiled cleanly.
Using this idea, AutoForm4Lean consists of an iterative “bug-
fixing” approach that integrates LLM to synthesize candidate
LEAN code and LEAN to check for errors. If errors exist,
AutoForm4Lean uses LEAN feedback to help LLM improve
its synthesis process.

When applied to the counting example, our Auto-
Form4Lean prototype was able to generate 2 correct LEAN
statements from just 10 candidates in two iterations. In the
first iteration, AutoForm4Lean uses LLM to generate 5
candidates, which are all rejected by LEAN. The tool then
gathers error messages from LEAN and in the second iteration
instructs LLM to generate 5 new candidates from the previ-
ous ones, taking into account the error feedback. This time
AutoForm4Lean got 2 candidates that LEAN successfully
compiles. Fig. 1 summarizes the process: in the 1st (initial)
iteration, AutoForm4Lean obtains error messages and uses
them as feedback to generate the correct candidates in the 2nd
iteration. Notice how the errors (shown in red in the candidates
in the first iteration) were modified to be the correct ones
(shown in green in the candidates in the second iteration).

B. Correctness of Formalization

Generating syntactically correct statements is one thing,
ensuring that they are correctly translated from the original

statement is another. This difference is analogous to a program
being syntactically correct (passes the compilation state) and
semantically correct (behaves as expected), with the latter is
often much more challenging.

For the two candidates generated in Fig. 1, only the
first one, count_valid_subsets_general, correctly
formulates and checks for valid subsets via the function
valid_subset_general (not shown). The second one,
while being a valid LEAN statement, is incorrect and does
not even check for valid subsets(does not even use the set S
of the input problem).

AutoForm4Lean includes an LLM-based checker to de-
termine and filter incorrect candidates. Specifically, the LLM
checks that the candidate satisfies several requirements such
as if it defines and uses mathematical objects described in
the original problem (e.g., set, type, variables) and contains
specific combinatoric details from the original problem.

In our example, the first candidate satisfies all requirements.
It uses elements and variables from in the original problem
(e.g., set S and variable k) and defines a helper function
valid_subset_general to capture the validity of a sub-
set. However, the second candidate fails because it does not
use element sets or check subsets.

III. DATASET CONSTRUCTION

AutoForm4Lean relies on LLMs for autoformalization and
correctness checking of combinatorics problems. The power
of LLMs comes from the data they are trained on. However,
LLM data for combinatorics is underdeveloped—in fact, even
in non-LLM scenarios, topics related to combinatorics are
relatively scarce in proof assistants like LEAN [21]. Among
two large-scale datasets MMA [27] and Lean Workbook [28]
on LEAN formalizations, MMA is just an extraction of the
mathlib library with few combinatoric instances, and only
893/57,000+=1.5% examples in Lean Workbook are combi-
natorics problems, a very small number for any meaningful
LLM training.

AutoForm4Lean tackles this problem by using an LLM to
generate synthetic data for LLM. Fig. 2 shows the process.
First, we give the LLM existing combinatoric problems (the
informal “English” problems) as seeds and ask it to generate
new problems. We then attempt to falsify (i.e., disprove) the
generated problems by using LLM to find counterexamples.
If the falsifier fails to find a counterexample, we add the
problem to our collection. Next, we integrate the collection
into the autoformalization (i.e., iterative bug-fixing, §II-A) and
correctness checking process (§II-B) in AutoForm4Lean to
obtain LEAN formalization of combinatoric problems. These
data are combined to form our dataset and then are used to
train LLMs specialized in combinatorics problems.

A. Problem Generator

The problem generation component focuses on generating
combinatorics problems which are used to train LLMs. While
we can use existing combinatoric problems from textbooks and
existing math problems databases, they are limited in terms of



Fig. 1. Autoformalization in AutoForm4Lean. The errors are highlighted in red, while the fixes are highlighted in green.
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Fig. 2. Overview of AutoForm4Lean.

quantity and accessibility. Moreover, they are often concrete
problems that are not suitable for formalization. For example,
“A 6-person committee is formed from 10 people, with two
people refusing to work together. How many ways can the
committee be formed?” has concrete numbers that are not
related to any combinatoric statements or theorems.

To address this issue, the problem generator component of
AutoForm4Lean generates abstract combinatorics problems
from these concrete problems by generalizing concrete values
to variables. For example, AutoForm4Lean turns the concrete
problem above to: “From a set S of n elements, select a subset
s of k elements. If m elements cannot be together in s, how
many ways can we select s?”. Next, AutoForm4Lean turns
this into a proof problem: “Prove that from a set S of n
elements, there are f(n,m, k) ways to select a subset s of
k elements such that m < k elements cannot be together in
s” that can be formalized in LEAN.

B. Problem Falsifier

LLMs often have the hallucination issue [29], which in
this context means generating combinatoric problems that
are meaningless and incorrect. We thus need to sanitize the
generated problems.

To do this, AutoForm4Lean employs a falsifier component
to disprove generated problems by finding counterexamples,
e.g., concrete inputs that falsify the proof. The falsifier aims
to synthesize a program implementation of the problem in
Python and several test cases (including edge/corner cases). If

the program fails any of the tests, the problem is disproved
and AutoForm4Lean discards it.

For example, after generating the proof question in §III-A,
AutoForm4Lean synthesizes a program to represent it with
three functions: one function to count the number of valid
subsets, one that implements the formula of f(n,m, k), and
a (driver) function that compares the outputs of the two
functions. AutoForm4Lean next generates concrete test cases
for the program, e.g., (n = 10,m = 2, k = 6), and removes
the proof question as it makes the program fail.

After removing invalid problems, we now have a dataset
of combinatoric problems suitable for LEAN formalization
(Fig. 2). We then use this dataset to train LLMs specialized
in combinatorics problems.

C. Autoformalization and Checking

Once a dataset of combinatorics problems is obtained, we
use it to train LLMs for autoformalization and correctness
checking as shown in Fig. 2 and §II. Here we provide
additional details on these two processes.

a) Autoformalization: For the iterative bug-fixing pro-
cess for autoformalization (§II-A), AutoForm4Lean first gen-
erates a list of n candidates formalizations and puts them in
a queue. For each loop iteration, AutoForm4Lean selects a
candidate p from the queue and invokes LEAN to compile p. If
the compilation succeeds, AutoForm4Lean adds p to its com-
binatorics database. Otherwise, AutoForm4Lean uses LLM
to analyze the error message from LEAN and synthesize a
repaired candidate p′ and puts it back into the queue. The loop



terminates when either the queue is empty or AutoForm4Lean
reaches a maximum number of iterations.

We note that error messages from LEAN can be ambiguous
and difficult to debug. For example, in the first iteration of
Fig. 1, the error messages of the second candidate contain
a meta-variable “?m.4640”, which is cryptic and difficult to
understand. Fortunately, AutoForm4Lean was able to analyze
the whole error message, determine that there is a type
mismatch, and provide a repair by changing from “List.range
m” to “Finset.range m”.

b) Correctness Checking: §II-B discusses the importance
of correctness in formalization. To ensure the formalization
matches the original informal problem, AutoForm4Lean uses
an LLM-based checker to evaluate the correctness of the
formalization based on several criteria:

• Type correctness: Are all mathematical objects (e.g., sets,
functions, variables) properly typed and consistent with
the original problem?

• Completeness: Are helper definitions (e.g., functions,
abbreviations, constructions) properly formalized (with
proofs where applicable)?

• Faithfulness: Does the formalization accurately reflect the
meaning of the original problem?

• Logical correctness: Are there any logical errors in the
formalization? (e.g., a helper function that is well-defined
but logically incorrect).

IV. PRELIMINARY RESULTS

We developed an AutoForm4Lean prototype and used
it to generate a small dataset of combinatorics problems
and their formalizations. This dataset is then used to train
the underlying LLMs for autoformalization and correctness
checking. Our preliminary results show the effectiveness of
AutoForm4Lean, which generates 10/10 syntactically correct
formalizations, 8 of which are semantically correct.

Our dataset is created using the problem generation and
falsification components described in Fig. 2. Specifically, we
collect 10 combinatorics problems from math textbooks and
contest forum1. Next, we apply AutoForm4Lean to generate
formalizations (problem generation) and attempt to invalidate
them by creating counterexamples (problem falsification).
About 40% of the generated problems were falsified, and in
the end, we obtain a dataset of 100 combinatorics problems.

Next, we explore several ways to generate LEAN formaliza-
tions. In this preliminary study, we compare three approaches:
(i) oversampling, where we generate 64 formalization can-
didates without iterative bug-fixing, (ii) iterative, where we
generate 5 initial candidates with iterative bug-fixing, and
(iii) iterative + in-context learning (ICL) [30], where we add
examples from our dataset to manually guide the LLM’s
behaviors (i.e., add these examples to the LLM prompt as
a form of demonstration).

Table I shows the results, with # succ. comp meaning
successfully compiled by LEAN (i.e., syntactically correct)

1https://artofproblemsolving.com/community

Tab. I
PRELIMINARY RESULTS.

# suc. comp. # correct (LLM) # correct (human)
Oversampling 7/10 6/10 6/10
Iterative 9/10 6/10 6/10
Iterative + ICL 10/10 7/10 8/10

and correct (LLM) and correct (human) indicating the number
of correct formalizations as judged by the LLM-based verifier
and a human evaluator (us). Here, we see that even with a
“tiny” dataset of 100 problems, AutoForm4Lean was able
to achieve promising results. Even with oversampling where
no iterative bug-fixing is applied, 7/10 formalizations were
successfully compiled, and 6/10 were considered correct by
the LLM-based verifier and human evaluator. The iterative
approach outperforms the oversampling approach as expected,
with 9/10 successfully compiled and 6/10 considered correct
by the human evaluator. Finally, the iterative + ICL approach
outperforms the other two, with 10/10 formalizations success-
fully compiled and 8/10 formalizations considered correct.

These initial results demonstrate the effectiveness of Aut-
oForm4Lean, even with a limited dataset. We note that as
our dataset grows, we anticipate that the benefits of ICL may
diminish. With a larger corpus of formalized combinatorics
problems, training a specialized LLM is likely to become a
more effective strategy.

V. CONCLUSION AND FUTURE PLANS

We have presented AutoForm4Lean, a system that uses
LLMs and SE/FM techniques to autoformalize and check the
correctness of combinatorics problems for the LEAN proof as-
sistant. Our preliminary results show that AutoForm4Lean is
effective in generating correct formalizations of combinatorics
problems compared to the state-of-the-art.

We are working on generating a larger and more diverse
dataset of combinatorics problems to train LLM to rea-
son about combinatorics problems and improve our Auto-
Form4Lean system. Autoformalization is just the first step,
and we next plan to use the generated dataset and ideas here
to synthesize the full proof steps in LEAN for combinatorics
problems, with the goal of helping mathematicians to fully
formalize and prove their combinatorics work.

ACKNOWLEDGMENT

We thank the anonymous reviewers for their helpful com-
ments. This material is based in part upon work supported
by the National Science Foundation under grant numbers
2422036, 2319131, 2238133, and 2200621, and by an Amazon
Research Award.

REFERENCES

[1] The Coq Development Team, “The Coq reference manual – release
8.19.0,” https://coq.inria.fr/doc/V8.19.0/refman, 2024.

https://artofproblemsolving.com/community
https://coq.inria.fr/doc/V8.19.0/refman


[2] L. De Moura, S. Kong, J. Avigad, F. Van Doorn, and J. von Raumer, “The
lean theorem prover (system description),” in Automated Deduction-
CADE-25: 25th International Conference on Automated Deduction,
Berlin, Germany, August 1-7, 2015, Proceedings 25. Springer, 2015,
pp. 378–388.

[3] G. Gonthier, “Formal proof—the four-color theorem,” Notices Amer.
Math. Soc., vol. 55, no. 11, pp. 1382–1393, 2008.

[4] Tereance Tao, “A digitisation of the proof of the Polynomial
Freiman-Ruzsa Conjecture in Lean 4,” 2024. [Online]. Available:
https://teorth.github.io/pfr/

[5] D. Castelvecchi, “Mathematicians welcome computer-assisted proof in
‘grand unification’theory,” Nature, vol. 595, no. 7865, pp. 18–19, 2021.

[6] Lean Community, “100 theorems,” 2024. [Online]. Available: https:
//leanprover-community.github.io/100.html

[7] Y. Li, D. Choi, J. Chung, N. Kushman, J. Schrittwieser, R. Leblond,
T. Eccles, J. Keeling, F. Gimeno, A. Dal Lago et al., “Competition-
level code generation with alphacode,” Science, vol. 378, no. 6624, pp.
1092–1097, 2022.

[8] D. Castelvecchi, “Are chatgpt and alphacode going to replace program-
mers?” Nature, 2022.

[9] S. Chakraborty, S. K. Lahiri, S. Fakhoury, M. Musuvathi, A. Lal,
A. Rastogi, A. Senthilnathan, R. Sharma, and N. Swamy, “Ranking
llm-generated loop invariants for program verification,” arXiv preprint
arXiv:2310.09342, 2023.

[10] K. Pei, D. Bieber, K. Shi, C. Sutton, and P. Yin, “Can large language
models reason about program invariants?” in International Conference
on Machine Learning. PMLR, 2023, pp. 27 496–27 520.

[11] E. First, M. Rabe, T. Ringer, and Y. Brun, “Baldur: Whole-proof
generation and repair with large language models,” in Proceedings of
the 31st ACM Joint European Software Engineering Conference and
Symposium on the Foundations of Software Engineering, 2023, pp.
1229–1241.

[12] P. Lammich, “Generating verified llvm from isabelle/hol,” in 10th
International Conference on Interactive Theorem Proving (ITP 2019).
Schloss Dagstuhl-Leibniz-Zentrum für Informatik, 2019.

[13] K. Yang, A. Swope, A. Gu, R. Chalamala, P. Song, S. Yu, S. Godil,
R. J. Prenger, and A. Anandkumar, “Leandojo: Theorem proving with
retrieval-augmented language models,” Advances in Neural Information
Processing Systems, vol. 36, 2024.

[14] S. Welleck and R. Saha, “Llmstep: Llm proofstep suggestions in lean,”
arXiv preprint arXiv:2310.18457, 2023.

[15] J. M. Han, J. Rute, Y. Wu, E. Ayers, and S. Polu, “Proof artifact
co-training for theorem proving with language models,” in International
Conference on Learning Representations, 2022. [Online]. Available:
https://openreview.net/forum?id=rpxJc9j04U

[16] Z. Li, J. Sun, L. Murphy, Q. Su, Z. Li, X. Zhang, K. Yang, and
X. Si, “A survey on deep learning for theorem proving,” arXiv preprint
arXiv:2404.09939, 2024.

[17] AlphaProof and A. teams, “Ai achieves silver-medal standard solving in-
ternational mathematical olympiad problems,” https://deepmind.google/
discover/blog/ai-solves-imo-problems-at-silver-medal-level/, 2024.

[18] F. Ruskey, “Combinatorial generation,” Preliminary working draft. Uni-
versity of Victoria, Victoria, BC, Canada, vol. 11, p. 20, 2003.
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