
An Agent-Based Algorithm
for Generalized Graph Colorings

Thang N. Bui and ThanhVu H. Nguyen
Computer Science Program

The Pennsylvania State University at Harrisburg
Middletown, PA 17057

{tbui, txn131}@psu.edu

ABSTRACT
This paper presents an algorithm for solving a number of
generalized graph coloring problems. Specifically, it gives an
agent-based algorithm for the Bandwidth Coloring problem.
Using a standard method for preprocessing the input, the
same algorithm can also be used to solve the Multicoloring
and Bandwidth Multicoloring problems. In the algorithm a
number of agents, called ants, each of which colors a portion
of the graph, collaborate to obtain a coloring of the entire
graph. This coloring is then further improved by a local
optimization algorithm. Experimental results on a set of
benchmark graphs for these generalized coloring problems
show that this algorithm performs very well compared to
other heuristic approaches.

Categories and Subject Descriptors: G.2.2[Discrete
Mathematics]:Graph Theory – Graph algorithms; I.2.8[Artificial
Intelligence]:Problem Solving, Control Methods, and Search
– Heuristic methods

General Terms: Design, Algorithms

Keywords: Graph Coloring, Bandwidth Coloring, Multi-
coloring, Bandwidth Multicoloring

1. INTRODUCTION
The graph coloring problem (GCP) is the problem of col-

oring the vertices of an undirected graph with as few col-
ors as possible, such that no two adjacent vertices have the
same color. This problem is well known to be NP-hard.
Many heuristic approaches have been proposed for it includ-
ing constructive methods [5][22], iterative methods [12], ge-
netic algorithms [30], local search methods [26], tabu search
methods [17], and ant system algorithms [6][8][9][11][30].

Generalizations of the graph coloring problem include the
Bandwidth Coloring, Multicoloring, and Bandwidth Multi-
coloring problems. They have more constraints placed on
the vertices and/or edges of the graph. These generaliza-
tions model a collection of useful applications. For instance,
the Bandwidth Coloring and Multicoloring problems have

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
GECCO’06, July 8–12, 2006, Seattle, Washington, USA.
Copyright 2006 ACM 1-59593-186-4/06/0007 ...$5.00.

been used to model the fixed channel assignment problem,
which is to assign frequencies to different cells in a mobile
cellular network such that certain frequency separations are
satisfied while minimizing the amount of interferences. Fur-
thermore, if each cell must use a number of separate frequen-
cies, then the problem can be modeled by the Bandwidth
MultiColoring problem [27].

As with GCP, these generalizations are also NP-hard.
There are several heuristic algorithms for these generaliza-
tions including Prestwich’s local search and constraint prop-
agation method [29] and Lim et al’s hybrid combinations
of Squeaky Wheel Optimization (SWO) and Hill Climbing
techniques [21, 23]. Recently, Lim et al proposed another
approach for these problems by combining SWO and Tabu
Search techniques [24].

In this paper, we propose an agent-based optimization
algorithm for these generalized graph coloring problems. We
call the agents in our algorithm ants as the agents in our
algorithm mimic the collective ability of an ant colony to
solve problems. It should be noted that our algorithm is not
an ant colony optimization (ACO) algorithm as described
in [13]. Among other things, ants in our algorithm do not
use pheromone to communicate. Experimental results on
a set of 33 benchmark graphs, plus additional constraints
for three different generalized coloring problems for a total
of 99 problem instances, show that our algorithm produces
results that are comparable to those of other algorithms.

The rest of the paper is organized as follows. In Section 2
we give formal definitions for the Graph Coloring problem
and its generalizations, and briefly summarize the complex-
ity of finding approximate solutions. We describe our algo-
rithm in Section 3 and present the experimental results in
Section 4. The conclusion is given in Section 5.

2. PRELIMINARIES
In this section we describe the Graph Coloring problem

and its variations that are considered in this paper. We also
give a brief summary of the approximation complexity for
the Graph Coloring problem.

The Graph Coloring Problem (GCP): This is the prob-
lem of finding an assignment of colors to the vertices of a
graph, using a minimum number of colors, such that each
vertex has a color and no two adjacent vertices have the
same color.

Input: An undirected graph G = (V, E).

Output: A minimum k and a mapping f : V −→ {1, . . . , k}
such that ∀(u, v) ∈ E, f(u) �= f(v).

19

The Bandwidth Coloring Problem (BCP): This is sim-
ilar to GCP, except that each edge in the input graph has
a positive integer weight and the coloring must satisfy an
extra constraint. More precisely, the difference between the
colors of the two end points of an edge must be at least the
weight of that edge.

Input: An undirected graph G = (V, E) with positive inte-
ger edge weight d(u, v), ∀(u, v) ∈ E.

Output: A minimum k and a mapping f : V −→ {1, . . . , k}
such that ∀(u, v) ∈ E, |f(u)− f(v)| ≥ d(u, v).

Note that BCP reduces to GCP if d(u, v) = 1, ∀(u, v) ∈ E

The Multicoloring Problem (MCP): This is another
generalization of GCP, where each vertex in the input graph
has a positive integer weight. The goal is to find a coloring
of the vertex set, using as few colors as possible, such that
each vertex is colored with not just one color but with a set
of as many colors as the weight of that vertex. Furthermore,
for any edge in the graph the color sets of the two end points
of that edge must be disjoint.

Input: An undirected graph G = (V, E) with positive inte-
ger weight w(u), ∀u ∈ V .

Output: A minimum k and ∀u ∈ V , subsets S(u) ⊂ {1, . . . , k}
such that1

• ∀u ∈ V, |S(u)| = w(u), and
• ∀(u, v) ∈ E, S(u) ∩ S(v) = ∅.

Note that MCP reduces to GCP if w(u) = 1, ∀u ∈ V .

The Bandwidth Multi-Coloring Problem (BMCP):
This generalization of the GCP has the constraints of both
BCP and MCP.

Input: An undirected graph G = (V, E) with positive in-
teger vertex weight w(u), ∀u ∈ V and positive integer
edge weight d(u, v), ∀(u, v) ∈ E.

Output: A minimum k and ∀u ∈ V , subsets S(u) ⊂ {1, . . . , k}
such that

• ∀u ∈ V, |S(u)| = w(u),
• ∀(u, v) ∈ E, S(u) ∩ S(v) = ∅, and
• ∀(u, v) ∈ E, ∀p ∈ S(u), q ∈ S(v), |p− q| ≥ d(u, v).

We note that input graphs for BMCP may contain self-
loops. For example, d(u, u) = 3 means that any two colors in
the set of colors assigned to vertex u must differ by at least
3. It is clear that BMCP is GCP if d(u, v) = 1, ∀(u, v) ∈ E
and w(u) = 1, ∀u ∈ V .

As mentioned in the previous section, GCP, BCP, MCP,
and BMCP are all NP-hard. Thus, we do not expect to
have exact polynomial time algorithms for these problems.
There is no known approximation algorithm for BCP, MCP
or BMCP. In fact, not much is known about the approxi-
mation complexity of the generalized graph coloring prob-
lems. However, for the graph coloring problem (GCP) it is
known that approximating the chromatic number2 within
O

`|V |(log log |V |)2/(log |V |)3´
can be done in polynomial

1|X| denotes the cardinality of set X.
2The chromatic number of a graph is the minimum number
of colors needed to color the graph in the GCP.

time [16]. It is also known that the chromatic number can-

not be approximated within |V |1/7−ε, for any ε > 0 un-
less P = NP [2]. Thus, approximations for the generalized
graph coloring problems are at least as difficult.

3. ALGORITHM
In this section we describe our agent-based algorithm for

the generalized graph coloring problems described in the
previous section. This algorithm is based on and extends
the algorithm in [6] for the classical graph coloring problem
(GCP). In what follows we use the term conflict at a vertex
v to denote the number of vertices adjacent to v having color
or color sets that are inconsistent with the coloring of v.

The main idea of the algorithm is for a set of agents, called
ants, to color the graph. The ants are distributed on the ver-
tices of input graph based on the conflicts at the vertices.
Each ant will color a portion of the graph. These local col-
orings by the ants together form a coloring for the graph.
This is different from the traditional Ant Colony Optimiza-
tion algorithms, where each ant finds a complete solution to
the problem [13]. No ant in our algorithm solves the entire
problem by itself. Our algorithm is thus more amenable to
a distributed implementation. However, in this paper we do
not present such an implementation. Another difference in
our approach is that the ants do not have pheromone lay-
ing capability3. In limited experiments we found that with
pheromone the algorithm took longer to converge without
providing visible or significant improvement on the quality
of the solution.

3.1 Overview
Let 〈G = (V, E), w, d〉 be an instance of the generalized

graph coloring problems, where G is a graph with vertex set
V , edge set E, w the vertex weight function, and d the edge
weight function. We first find an initial coloring of G using
a simple greedy algorithm, called IterativeGreedy. We then
use a colony of ants to improve on the initial coloring. The
algorithm proceeds in a number of cycles. In each cycle,
ants are distributed to vertices of the graph based on the
conflicts at the vertices. Vertices with higher conflict will
be selected first. Each of the ants attempts to color the
portion of the graph close to where it is at, using only the
set of currently available colors. At the end of a cycle, if
there are no conflicts in the current coloring then a local
optimization algorithm will attempt to improve the current
coloring. If the local optimization algorithm is successful,
the number of colors needed will be reduced. This set of
colors becomes the current set of available colors. If the
local optimization algorithm is not successful, there is no
change to the current coloring. Once the local optimization
algorithm is finished, the number of colors in the current
set of available colors is reduced by one. This is done by
deleting the highest number color from the set of available
colors. Vertices that were colored with the deleted color are
then recolored with another color randomly selected from
the reduced set of available colors, and we start another
cycle. Note that this recoloring may create a coloring with
nonzero conflict.

If the number of conflicts is non-zero for a number of con-
secutive cycles then the algorithm increases the number of

3However, how an ant colors is based partly on the colorings
done by previous ants.

20

Algorithm ABGC(G = (V, E), w, d)
preprocess G // needed only for MCP and BMCP
currentColoring←− IterativeGreedy(G, d)
maxK←− number of colors in currentColoring
attemptK←− αmaxK //attempt new goal, α < 1
keep random βmaxK color classes //rename colors as needed
distribute the remaining vertices into γmaxK color classes
update totalConflict cost of G
for cycle = 1 to nCycles do

for ant = 1 to nAnts do
if there is no conflict, break
ant clears its recentlyVisited tabu list
ant is placed on a vertex having maximum conflict
ant colors its current vertex
for move = 1 to nMoves do

ant moves to a neighboring vertex by taking two steps
ant colors its current vertex
ant updates local conflict(s) in its neighborhood
ant updates its recentlyVisited tabu list

end-for
end-for
update totalConflict cost of G
if totalConflict = 0 // run local optimization

maxK←− number of colors in currentColoring
lColoring←− localOpt(currentColoring)
lMaxK←− number of colors in lColoring
if lMaxK < maxK

maxK←− lMaxK
currentColoring←− lColoring

end-if
bestColoring←− currentColoring
attemptK←− maxK− 1
Recolor vertices that have colors greater than attemptK
update totalConflict cost of G

end-if
if attemptK has not improved in nChangeCycles cycles

attemptK←− attemptK + 1
(precond: attemptK < maxK)

if attemptK has not improved in nJoltCycles cycles
perform a Jolt operation

if attemptK has not improved in nBreakCycles cycles
break

end-for
return bestColoring and maxK

Figure 1: An agent-based algorithm for generalized
graph coloring problems (ABGC)

available colors by one before starting another cycle. Other
actions might also be taken by the algorithm to bring it out
of a potential local optimum before it starts another cycle.
Stopping conditions are described in full below. At the end
of the algorithm the best coloring found is returned. The
complete algorithm is given in Figure 1. In the following
subsections we describe the various parts of the algorithm
in details.

3.2 Input Preprocessing
The algorithm described above works for all three general-

ized coloring problems (Bandwidth Coloring, Multicoloring,
and Bandwidth Multicoloring) with only a simple prepro-

cessing of the input graph. Specifically, no preprocessing is
needed for the Bandwidth Coloring problem. For the Multi-
coloring and Bandwidth Multicoloring problems where each
vertex has a positive integer weight, we apply a transforma-
tion that is used in [24] to the input graph. A vertex a of
weight w(a) is transformed into a clique of size w(a), with
each edge in the clique having the weight of the edge (a, a),
i.e., d(a, a). In addition, if (a, x) is an edge in the original
graph, then we also connect each vertex in the clique to x
and assign such an edge the weight d(a, x). We note that this
transformation takes exponential time if vertex weight w(a)
is exponential in the number of vertices in the graph. How-
ever, this approach is reasonable in practice as the weights
in real world applications are much less than the number of
vertices in the graph. For example, the number of different
frequencies assigned to a cell phone is much less than the
number of cell phones.

3.3 Iterative Greedy algorithm

Algorithm IG(G = (V, E), d)
for i = 1 to |V | do //initialize the coloring

C[i]←− 0
end-for
for i = 1 to |V | do

forbiddenSet←− ∅
u←− an uncolored vertex selected at random or

based on max degree
for each vertex v that is adjacent to u do

if C[v] �= 0 then
L←− max(1, c[v]− d(u, v) + 1)
U ←− c[v] + d(u, v)− 1
forbiddenSet←− forbiddenSet ∪ [L . . . U]

end-if
end-for
C[u]←− the color selected based on the forbiddenSet

and the rules described in Section 3.5
end-for
return C

Figure 2: Iterative Greedy algorithm

After preprocessing the input graph as needed, ABGC be-
gins by using a greedy algorithm on the graph to obtain an
initial coloring that is valid, but not necessarily optimal or
even good. This greedy algorithm is called IterativeGreedy
(IG) and is given in Figure 2. At each step of the algorithm,
IG selects a vertex to color next. Selection is done in a ran-
dom manner or based on the vertex degree, i.e., among the
uncolored vertices, the vertex of highest degree is selected
first. When a vertex u is selected to be colored, IG uses the
same scheme as in ABGC. This coloring scheme is described
in Section 3.5.

ABGC uses IG to find an initial coloring as follows. It first
runs IG using the highest degree selection scheme. It then
runs IG twenty times using the random selection scheme.
The best coloring found among the twenty-one runs is then
used as the initial coloring for ABCG.

3.4 How An Ant Moves
In each cycle after an ant is placed at a vertex, it attempts

to color the neighborhood of that vertex. To do this, the ant

21

takes two steps, i.e., traverses along a path of length two,
then colors the vertex that it lands on. The process of taking
a number of steps then coloring the vertex is called a move.
Within a cycle, each ant makes nMoves moves.

In the first step of an ant’s move, the ant randomly selects
an adjacent vertex and moves there. In the second step, the
ant selects an adjacent vertex that has the highest conflict
among all adjacent vertices and moves there. Ties are bro-
ken arbitrarily. If there is no conflict among the adjacent
vertices after the first step, the ant is relocated to the ver-
tex that has the highest conflict in the entire graph. Again,
ties are broken arbitrarily. If there is no conflict left all ants
will stop moving and the algorithm prepares for the next
cycle by reducing the number of available colors by one.

Additionally, whenever an ant selects a vertex to move to,
it always avoids vertices that are in its current tabu list. It
also places vertices that it has just visited on its current tabu
list. The tabu list is of fixed length. Thus, when the list is
full, older vertices on the list will be removed as new vertices
are added to the list. The reason for having the random first
step in a move and the tabu list is to allow more exploration
of the search space and to help the algorithm escape from
local optima. With an increase in running time, we can gain
some improvement in the algorithm by allowing each ant to
take more than two steps per move. The above algorithm
can be easily extended to accommodate this option.

3.5 How A Vertex Is Colored
Within each cycle, an ant colors only a limited local area

of the graph without any global knowledge of the graph
and uses only colors from the set of available colors (in the
algorithm of Figure 1, the number of available colors is at-
temptK). The ant’s objective is to color or recolor a vertex
so that the conflict at that vertex is zero, if possible.

To color a vertex u an ant must first determine the set
of eligible colors that can be used to color u. This is done
as follows. First, for each vertex v, adjacent to u, a set of
colors that is in conflict with the coloring of v is determined.
This set of conflicting colors is computed by examining the
color of v and the weight of the edge (u, v). The union
of the conflicting color sets of the vertices adjacent to u is
called the set of forbidden colors. These are the colors that
cannot be used to color u. This is the same process as that of
computing the forbiddenSet in the IG algorithm of Figure 2.

Once the set of forbidden colors has been computed, the
set of eligible colors can be easily determined by taking the
difference between the set of all colors, i.e., {1, . . . , attemptK},
and the set of forbidden colors.

If the cardinality of the set of eligible colors is greater
than 1, then it can be viewed as a union of intervals. The
ant then chooses the color that is the median of the largest
interval in the set of eligible colors. If there are more than
one interval of largest size, one of those intervals is chosen
at random. Furthermore, if there are two medians then one
of them will be chosen at random. For example if the set
of eligible colors is {1, 2, 3, 4, 5, 8, 9, 11, 12, 13, 14, 15}, then
this is the same as [1 . . . 5] ∪ [8 . . . 9] ∪ [11 . . . 15]. Thus, one
of the intervals [1 . . . 5] or [11 . . . 15] is selected at random,
say the latter. Then the selected color is 13, the median of
[11 . . . 15]. This selection scheme allows later vertices more
room to meet their constraints, i.e., the set of eligible colors
will be larger for neighboring vertices.

If the set of eligible colors is empty, i.e., each of the avail-

able color is in conflict with the coloring of one or more ad-
jacent vertices, the ant then chooses the color that conflicts
with the fewest adjacent vertices. Ties are broken arbitrar-
ily.

After the ant colors, the vertex conflict is updated and it
is added to the tabu list of the ant. Note that this vertex
will replace the oldest one in case the tabu list is full.

3.6 Local Optimization

Algorithm LocalOpt(G = (V, E), d, C)
// C is a valid coloring of G
using the input coloring C sort V

into decreasing order of color numbers
for i = 1 to |V | do //erase the input coloring

C[i]←− 0
end-for
for i = 1 to |V | do

forbiddenSet←− ∅
u←− the next uncolored vertex in the sorted set V
for each vertex v that is adjacent to u do

if C[v] �= 0 then
L←− max(1, c[v]− d(u, v) + 1)
U ←− c[v] + d(u, v)− 1
forbiddenSet←− forbiddenSet ∪ [L . . . U]

end-if
end-for
C[u]←− the smallest color not in the forbiddenSet

end-for
return C

Figure 3: The local optimization algorithm

The local optimization operation is applied every time
a valid coloring is found in ABGC. This optimization al-
gorithm is similar to the IterativeGreedy algorithm in Fig-
ure 2. The local optimization algorithm first sorts the vertex
set into decreasing order of vertex color, i.e., the color given
in the input coloring. The algorithm then erases all vertex
colors from the graph, and starts coloring the vertices one
at a time in the order of the sorted vertex set, i.e., vertices
that have higher color numbers in the original input color-
ing will be selected first. For each vertex to be colored, the
algorithm computes a set of forbidden colors in the same
manner as in the algorithm of Figure 2. The vertex is then
colored using the smallest color number that is not in the
forbidden set. When the algorithm terminates it returns the
coloring that it found.

If the coloring returned by the local optimization algo-
rithm is better than the current best coloring, it replaces
the current best coloring. Otherwise, it is discarded. It
should be noted that colorings obtained by just running the
IterativeGreedy algorithm followed by the local optimiza-
tion algorithm alone are never as good as those obtained by
ABGC. In other words, operations performed by the ants
are essential in finding good colorings.

3.7 Jolt and Stopping Criteria
At the end of a cycle, the total conflict of the current color-

ing is computed. If the total conflicts is zero, the number of
available colors attemptK is reduced by 1. Next all vertices
with color number greater than attemptK are re-colored by

22

assigning each of them a randomly selected color in the in-
terval [1 . . . attemptK]. At this point the current coloring
may be an invalid one, i.e., the total conflict is non-zero.
The algorithm now starts a new cycle.

Note that although we did not explicitly use pheromone
as memory device but how the ants color in cycle i + 1 is
based on the coloring of cycle i. In other words, the coloring
done in cycle i + 1 is built upon the result from cycle i.

It is common that search algorithm such as this agent-
based algorithm would get stuck at local optima. To alle-
viate this problem, we add a procedure, called a jolt, for
perturbing the current coloring, effectively pushing it out of
local optima when needed. More specifically, if the ants have
not been able to reduce the number of colors used for the
last nJoltCycles consecutive cycles, then the jolt operation
is performed. Vertices that have conflicts in the top 10% are
selected and their neighbors are randomly re-colored using
80% of the current set of available colors. The objective of
the jolt operation is to create enough perturbation in the
current coloring to push it out of a local optimum, but not
enough to completely randomize the coloring that has been
built up to that point.

The algorithm stops after it has run for a preset number
of cycles, called nCycles, or if it has not made any improve-
ment for a number of nBreakCycles consecutive cycles. All
parameters are defined in the next subsection.

3.8 Parameters
In this section we give a description for each parameter

used in the algorithm. These parameters were obtained by
testing the algorithm on a few graphs. These parameters
were not tuned for any particular classes of graphs. The ob-
jective is to balance between the performance of ABGC and
its running time. We assume that n = |V | is the cardinality
of the vertex set.

nAnts is the number of ants in a colony and was set
to 2n. For running time consideration nAnts was set to
max(2n, 150).

nCycles is the maximum number of cycles in the algo-
rithm and was set to be min(6n, 4000).

nMoves is the number of moves each ant makes in a cycle
and was set to n/4.

rSizeLimit is the length of the tabu list of recently col-
ored vertices and is set to be nMoves/3. An ant will avoid
revisiting vertices in its tabu list, allowing a more diverse
exploration of the graph.

nChangeCycle is the number of consecutive cycles al-
lowed in which there is no improvement before the number
of available colors, attemptK, is increased. This parameter
was set to 5.

nJoltCycles is the number of consecutive cycles during
which the value of attemptK has not improved before the jolt
operation is applied. This value was set to max(n/2, 150).

nBreakCycles is the number of consecutive cycles during
which attemptK has not improved before the algorithm is
terminated . This value was set to be nCycles/5, if it is
> 500, it is set to 500, if it is < 50, it is set to 50.

4. EXPERIMENTAL RESULTS
In this section we present the results of our algorithm on

the 33 GEOM graphs from [10]. For each graph, the BCP re-
quires an edge weight function, whereas the MCP requires a
vertex weight function and the BMCP requires both. Thus,

there are 99 problem instances in total. The algorithm was
implemented in C++ and run on a 3.0GHz Pentium 4 PC
with 2GB of RAM running the Linux operating system4.
For each problem instance we ran our algorithm for 100 tri-
als. Detailed information are listed in Tables 2, 3, and 4.
For each instance, we list the best (Min), worst (Max), av-
erage (Avg), and standard deviation (SD), of the colorings
found in 100 runs. The average running time, in seconds, is
also listed.

Tables 5 and 6 give a comparison of the results of our
algorithm against those of the following algorithms.

• Prestwich: Prestwich’s local search and constraint
propagation algorithm [29].

• Lim: Lim et al.’s Squeaky Wheel and Tabu Search
[23, 24]5.

• ABGC: Our agent-based algorithm.

The columns list the best results given by each of the three
algorithms. The last column shows the percentage difference
between our algorithm and the better of the other two. A
positive percentage means that our algorithm is better.

For the BCP problem, our results matched or surpassed
all results from [23, 24] but are not as good as those of
[29]. As pointed out in [29], their algorithm requires certain
parameter to be tuned for each graph or class of graphs.
That is not the case for our algorithm, ABGC.

For the Multicoloring problem, we do not give a table
comparing the results of our algorithm against those of other
algorithms since our results match those of [24] in all 33
cases. Furthermore, no results were provided by [29] for the
Multicoloring problem.

For the BMCP problem, our algorithm performs better
than the algorithm of [29]. Where results are not available,
we mark the corresponding entries with ‘–’. Comparing
against the algorithm of [23, 24], ABGC performs better
in most larger graphs while doing worse in a few smaller
graphs.

5. CONCLUSION
In this paper we presented an agent-based algorithm for

three generalized graph coloring problems. Overall, our al-
gorithm performs very well on a set of benchmark graphs.
Agents in our algorithm are called ants, however, they do
not have pheromone laying capability, a common compo-
nent in ant algorithms. We found that in this particular
algorithm, simple usage of pheromone to mark individual
color increases the algorithm’s running time without provid-
ing any significant benefit. We are investigating the usage of
pheromone to mark coloring patterns as aggregates and not
just as individual colors. We expect that pheromone used
in this way will retain the constraints in the coloring more
accurately, which in turn will help our algorithm’s perfor-
mance.

6. ACKNOWLEDGEMENTS
The authors would like to thank the anonymous reviewers

for their valuable comments.

4The dfmax benchmark takes 5.91s user time for r500.5.b.
See [10] for details regarding dfmax.
5We combine and select the best results from [23] and [24].

23

Table 1: Summary of the 33 geometric DIMACS
graph instances used

Instance |V | |E| Instance |V | |E|

geom20 20 40 geom80 80 429
geom20a 20 57 geom80a 80 692
geom20b 20 52 geom80b 80 743
geom30 30 80 geom90 90 531
geom30a 30 111 geom90a 90 879
geom30b 30 111 geom90b 90 950
geom40 40 118 geom100 100 647
geom40a 40 186 geom100a 100 1092
geom40b 40 197 geom100b 100 1150
geom50 50 177 geom110 110 748
geom50a 50 288 geom110a 110 1317
geom50b 50 299 geom110b 110 1366
geom60 60 245 geom120 120 893
geom60a 60 339 geom120a 120 1554
geom60b 60 426 geom120b 120 1611
geom70 70 337
geom70a 70 529
geom70b 70 558

7. REFERENCES
[1] Abril, J., F. Comellas, A. Cortes, J. Ozon, and M.

Vaquer, “A Multi-Agent System for Frequency
Assignment in Cellular Radio Networks,” IEEE Trans.
on Vehicular Technology, 49(5), September 2000, pp.
1558–1564.

[2] M. Bellare, O. Goldreich and M. Sudan, “Free Bits,
PCPs and Non-Approximability - Towards Tight
Results”, SIAM J. Computing, 27, 1998, pp. 804–915.

[3] Blum A. and D. Karger, “An O(n3/14)−Coloring
Algorithm for 3-Colorable Graphs,” Information
Processing Letters, 61(1), January 1997, pp. 49–53.

[4] Bonabeau, E., M. Dorigo, and G. Theraulaz,
“Inspiration for Optimization from Social Insect
Behavior,” Nature, 406, July 6, 2000, pp. 39–42.

[5] Brelaz, D. “New Methods to Color the Vertices of a
Graph,” Communications of the ACM, 22(4), April
1979, pp. 251–256.

[6] Bui, T. N. and C. Patel, “An Ant system Algorithm
for Coloring Graphs,” Computational Symposium on
Graph Coloring and Its Generalizations, COLOR02,
Cornell University, Ithaca, NY, 2002.

[7] Chiarandini, M. and T. Stützle, “An Application of
Iterated Local Search to Graph Coloring Problem,”
Computational Symposium on Graph Coloring and Its
Generalizations, COLOR02, Cornell University,
Ithaca, NY, 2002.

[8] Comellas, F. and J. Ozon, “Graph Coloring
Algorithms for Assignment Problems in Radio
Networks,” Applications of Neural Networks to
Telecommunications 2, 1995, pp. 49–56.

[9] Comellas, F. and J. Ozon, “An Ant Algorithm for the
Graph Coloring Problem,” ANTS’98 – From Ant
Colonies to Artificial Ants: First International
Workshop on Ant Colony Optimization, Brussels,
Belgium, October 15–16, 1998.

[10] Computational Series: Graph Coloring and Its

Table 2: Results of ABGC for BCP

Instance Min Max Avg SD Time
(sec)

geom20 21 21 21.0 0 0.03
geom20a 20 24 21.61 0.77 0.03
geom20b 13 14 13.11 0.31 0.04

geom30 28 29 28.04 0.2 0.07
geom30a 27 32 29.1 1.3 0.09
geom30b 26 27 26.07 0.26 0.13

geom40 28 29 28.08 0.27 0.11
geom40a 37 42 38.6 0.92 0.18
geom40b 33 38 35.17 1.39 0.25

geom50 28 31 28.17 0.53 0.24
geom50a 50 56 52.08 1.4 0.39
geom50b 36 44 38.92 1.64 0.39

geom60 33 35 33.5 0.54 0.39
geom60a 50 57 52.05 1.21 0.65
geom60b 43 51 46.44 1.58 0.83

geom70 38 42 38.33 0.63 0.66
geom70a 62 71 65.76 2.28 0.84
geom70b 51 58 53.72 1.46 1.02

geom80 41 45 42.09 0.94 0.7
geom80a 64 76 69.01 2.59 1.26
geom80b 64 74 67.62 1.92 1.6

geom90 46 51 46.88 1.05 0.92
geom90a 65 75 69.82 1.88 1.85
geom90b 74 85 78.96 2.28 2.57

geom100 50 60 52.24 1.42 1.23
geom100a 71 81 75.53 1.89 2.75
geom100b 79 93 82.52 2.16 3.59

geom110 50 54 52.14 0.96 1.48
geom110a 75 83 79.02 1.58 3.35
geom110b 83 97 89.05 2.3 4.22

geom120 59 67 61.79 1.46 1.67
geom120a 86 95 90.04 1.75 3.93
geom120b 91 102 96.43 2.15 5.9

Generalizations.
“http://mat.gsia.cmu.edu/COLOR04”.

[11] Costa, D. and A. Hertz, “Ants Can Colour Graphs,”
Journal of Operational Research Society, 48, 1997, pp.
295–305.

[12] Culberson J. and F. Luo, “Exploring the k-Colorable
Landscape with Iterated Greedy,” Cliques, Coloring
and Satisfiability – Second DIMACS Implementation
Challenge 1993, American Mathematical Society, 26,
1996, pp. 245–284.

[13] Dorigo, M. and G. Di Caro, “The Ant Colony
Optimization Meta-Heuristic,” New Ideas in
Optimization, McGraw-Hill, 1999, pp. 11–32.

[14] Dorigo, M. and L. Gambardella, “Ant Colony System:
A Cooperative Learning Approach to the Traveling
Salesman Problem,” IEEE Trans. on Evolutionary
Computation, 1(1), 1997, pp. 53–66.

24

Table 3: Results of ABGC for MCP

Instance Min Max Avg SD Time
(sec)

geom20 28 28 28 0 3.33
geom20a 30 30 30 0 3.49
geom20b 8 8 8 0 0.13

geom30 26 26 26 0 3.27
geom30a 40 40 40 0 8.65
geom30b 11 11 11 0 0.42

geom40 31 31 31 0 8.46
geom40a 46 46 46 0 15.51
geom40b 14 14 14 0 2.4

geom50 35 35 35 0 14.63
geom50a 61 61 61 0 43.05
geom50b 17 17 17 0 4.09

geom60 36 36 36 0 16.59
geom60a 65 65 65 0 53.3
geom60b 22 22 22 0 3.31

geom70 44 44 44 0 32.56
geom70a 71 71 71 0 62.29
geom70b 22 22 22 0 3.63

geom80 63 63 63 0 50.61
geom80a 68 68 68 0 75.08
geom80b 25 25 25 0 4.64

geom90 51 51 51 0 67.68
geom90a 65 65 65 0 73.99
geom90b 28 28 28 0 7.37

geom100 60 60 60 0 88.28
geom100a 81 81 81 0 127.87
geom100b 30 30 30 0 7.99

geom110 62 62 62 0 111.81
geom110a 91 91 91 0 198.22
geom110b 37 37 37 0 14

geom120 64 64 64 0 136.94
geom120a 93 93 93 0 308.78
geom120b 34 34 34 0 13.63

[15] Fleurent, C. and J. Ferland, “Genetic and Hybrid
Algorithms for Graph Coloring,” Annals of Operations
Research, 63, 1996, pp. 437–461.

[16] Halldórsson, M. M., “A Still Better Performance
Guarantee for Approximate Graph Coloring”,
Information Processing Letters, 45, 1993, pp. 19–23.

[17] Hertz, A. and D. Werra, “Using Tabu Search
Techniques for Graph Coloring,” Computing, 39,
1987, pp. 345–351.

[18] Jin, M., H. Wu, J. Horng, and C. Tsai, “An
Evolutionary Approach to Fixed Channel Assignment
Problems with Limited Bandwidth,” Proc. of IEEE
International Conference on Communications, 7, 2001,
pp. 2100–2104.

[19] Johnson, D. S., C. Aragon, L. McGeoch, and C.
Schevon, “Optimization by Simulated Annealing: An
Experimental Evaluation; Part II, Graph Coloring and

Table 4: Results of ABGC for BMCP

Instance Min Max Avg SD Time
(sec)

geom20 149 158 150.86 2.17 6.85
geom20a 169 176 170.78 1.55 11.27
geom20b 44 46 44.38 0.56 0.24

geom30 160 169 160.99 1.44 9.49
geom30a 210 225 214.94 3.04 25.39
geom30b 77 79 77.59 0.53 1.24

geom40 167 176 167.65 1.24 24.57
geom40a 214 226 216.37 1.91 66.72
geom40b 74 87 77.53 2.35 3.04

geom50 224 232 225.39 1.55 57.48
geom50a 317 336 325.68 3.48 379.48
geom50b 85 99 89.22 2.06 4.54

geom60 258 264 259.15 1.28 64.39
geom60a 357 369 363.47 2.42 203.23
geom60b 117 140 125.59 4.81 10.64

geom70 267 278 271.77 1.76 110.96
geom70a 470 488 478.27 3.49 276.63
geom70b 121 131 125.61 2.02 12.46

geom80 382 393 387.76 2.31 157.88
geom80a 367 382 372.92 3.22 239.61
geom80b 139 147 142.43 1.56 18.01

geom90 332 339 335.6 1.78 180.91
geom90a 378 417 388.28 8.91 387.54
geom90b 150 164 155.96 2.6 22.5

geom100 405 416 409.1 2.45 292.1
geom100a 440 461 449.46 4.27 548.34
geom100b 164 178 171.26 2.7 27.85

geom110 378 391 384.47 2.76 405.16
geom110a 487 502 493.61 3.24 1069.85
geom110b 208 228 213.25 3.48 43.86

geom120 398 408 401.84 2.36 790.21
geom120a 548 565 556.44 3.67 1660.62
geom120b 198 209 203.49 2.62 41.26

Number Partitioning,” Operations Research, 39(3),
May–June 1991, pp. 378–406.

[20] Johnson, D. S. and M. A. Trick, Editors, Cliques,
Coloring and Satisfiability – Second DIMACS
Implementation Challenge 1993, DIMACS Series in
Discrete Mathematics and Theoretical Computer
Science, American Mathematical Society, 26, 1996.

[21] Joslin, D. E. and D. P. Clements, “Squeaky Wheel
Optimization,” Journal of Artificial Intelligence
Research, 10, 1999, pp. 353–373.

[22] Leighton, F. T. “A Graph Coloring Algorithm for
Large Scheduling Problems,” J. of Research of the
National Bureau of Standards, 84(6), 1979, pp.
489–506.

[23] Lim, A., X. Zhang, and Y. Zhu, “A Hybrid Method for
the Graph Coloring Problem and Its Generalizations,”
5th Metaheuristics International Conference, 2003.

25

Table 5: Comparison of ABGC against other algo-
rithms for BCP

Instance Prestwich Lim ABGC Improvement
(%)

geom20 21 21 21 0.000
geom20a 20 22 20 0.000
geom20b 13 14 13 0.000

geom30 28 29 28 0.000
geom30a 27 32 27 0.000
geom30b 26 26 26 0.000

geom40 28 28 28 0.000
geom40a 37 38 37 0.000
geom40b 33 34 33 0.000

geom50 28 28 28 0.000
geom50a 50 52 50 0.000
geom50b 35 38 36 −2.857

geom60 33 34 33 0.000
geom60a 50 53 50 0.000
geom60b 43 46 43 0.000

geom70 38 38 38 0.000
geom70a 62 63 62 0.000
geom70b 48 54 51 −6.250

geom80 41 42 41 0.000
geom80a 63 66 64 −1.587
geom80b 61 65 64 −4.918

geom90 46 46 46 0.000
geom90a 64 69 65 −1.562
geom90b 72 77 74 −2.778

geom100 50 51 50 0.000
geom100a 70 76 71 −1.429
geom100b 73 83 79 −8.219

geom110 50 53 50 0.000
geom110a 74 82 75 −1.351
geom110b 79 88 83 −5.063

geom120 60 62 59 1.667
geom120a 84 92 86 −2.381
geom120b 87 98 91 −4.598

[24] Lim, A., Y. Zhu, Q. Lou, and B. Rodrigues, “Heuristic
Methods for Graph Coloring Problems,”, Proc. of the
ACM Symposium on Applied Computing, 2005, pp.
933–939.

[25] Maniezzo, V. and A. Carbonaro, “Ant Colony
Optimization: An Overview,” Essays and Surveys in
Metaheuristics, C. Ribeiro editor, Kluwer Academic
Publishers, 2001, pp. 21–44.

[26] Morgenstern, C., “Distributed Coloration
Neighborhood Search,” Cliques, Coloring and
Satisfiability – Second DIMACS Implementation
Challenge 1993, American Mathematical Society, 26,
1996, pp. 335–358.

[27] Park, E., Y. Kim, and B. R. Moon, “Genetic Search
for Fixed Channel Assignment Problem with Limited
Bandwidth,” Proc. of the Genetic and Evolutionary

Table 6: Comparison of ABGC against other algo-
rithms for BMCP

Instance Prestwich Lim ABGC Improvement
(%)

geom20 159 149 149 0.000
geom20a 175 169 169 0.000
geom20b 44 44 44 0.000

geom30 168 160 160 0.000
geom30a 235 209 210 −0.478
geom30b 79 77 77 0.000

geom40 189 167 167 0.000
geom40a 260 213 214 −0.469
geom40b 80 74 74 0.000

geom50 257 224 224 0.000
geom50a 395 318 317 0.314
geom50b 89 87 85 2.299

geom60 279 258 258 0.000
geom60a – 358 357 0.279
geom60b 128 116 117 −0.862

geom70 310 273 267 2.198
geom70a – 469 470 −0.213
geom70b 133 121 121 0.000

geom80 – 383 382 0.261
geom80a – 379 367 3.166
geom80b 152 141 139 1.418

geom90 – 332 332 0.000
geom90a – 377 378 −0.265
geom90b – 157 150 4.459

geom100 – 404 405 −0.248
geom100a – 459 440 4.139
geom100b – 170 164 3.529

geom110 – 383 378 1.305
geom110a – 494 487 1.417
geom110b – 206 208 −0.971

geom120 – 402 398 0.995
geom120a – 556 548 1.439
geom120b – 199 198 0.503

Computation Conference (GECCO 2002), pp.
1772–1779, 2002.

[28] Phan, V. and S. Skiena, “Coloring Graphs with a
General Heuristic Search Engine,” Computational
Symposium on Graph Coloring and Its
Generalizations, COLOR02, Cornell University,
Ithaca, NY, 2002.

[29] Prestwich, S. D. “Constrained Bandwidth
Multicoloration Neighborhoods,” Computational
Symposium on Graph Coloring and Its
Generalizations, COLOR02, Cornell University,
Ithaca, NY, 2002.

[30] White, T. B. Pagurek, and F. Oppacher, “ASGA:
Improving the Ant System by Integration with
Genetic Algorithms,” Proc. of the 3rd Conference on
Genetic Programming, July 1998, pp. 610–617.

26

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Academy
 /AgencyFB-Bold
 /AgencyFB-Reg
 /Alba
 /AlbaMatter
 /AlbaSuper
 /Algerian
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialRoundedMTBold
 /ArialUnicodeMS
 /BabyKruffy
 /BaskOldFace
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BlackadderITC-Regular
 /BodoniMT
 /BodoniMTBlack
 /BodoniMTBlack-Italic
 /BodoniMT-Bold
 /BodoniMT-BoldItalic
 /BodoniMTCondensed
 /BodoniMTCondensed-Bold
 /BodoniMTCondensed-BoldItalic
 /BodoniMTCondensed-Italic
 /BodoniMT-Italic
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BradleyHandITC
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /CalisMTBol
 /CalistoMT
 /CalistoMT-BoldItalic
 /CalistoMT-Italic
 /Castellar
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chick
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CopperplateGothic-Bold
 /CopperplateGothic-Light
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /Croobie
 /CurlzMT
 /EdwardianScriptITC
 /Elephant-Italic
 /Elephant-Regular
 /EngraversMT
 /ErasITC-Bold
 /ErasITC-Demi
 /ErasITC-Light
 /ErasITC-Medium
 /EstrangeloEdessa
 /Fat
 /FelixTitlingMT
 /FootlightMTLight
 /ForteMT
 /FranklinGothic-Book
 /FranklinGothic-BookItalic
 /FranklinGothic-Demi
 /FranklinGothic-DemiCond
 /FranklinGothic-DemiItalic
 /FranklinGothic-Heavy
 /FranklinGothic-HeavyItalic
 /FranklinGothic-Medium
 /FranklinGothic-MediumCond
 /FranklinGothic-MediumItalic
 /FreestyleScript-Regular
 /FrenchScriptMT
 /Freshbot
 /Frosty
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Gigi-Regular
 /GillSansMT
 /GillSansMT-Bold
 /GillSansMT-BoldItalic
 /GillSansMT-Condensed
 /GillSansMT-ExtraCondensedBold
 /GillSansMT-Italic
 /GillSans-UltraBold
 /GillSans-UltraBoldCondensed
 /GlooGun
 /GloucesterMT-ExtraCondensed
 /GoudyOldStyleT-Bold
 /GoudyOldStyleT-Italic
 /GoudyOldStyleT-Regular
 /GoudyStout
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /ImprintMT-Shadow
 /InformalRoman-Regular
 /Jenkinsv20
 /Jenkinsv20Thik
 /Jokerman-Regular
 /Jokewood
 /JuiceITC-Regular
 /Karat
 /Kartika
 /KristenITC-Regular
 /KunstlerScript
 /Latha
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSans-Typewriter
 /LucidaSans-TypewriterBold
 /LucidaSans-TypewriterBoldOblique
 /LucidaSans-TypewriterOblique
 /LucidaSansUnicode
 /Magneto-Bold
 /MaiandraGD-Regular
 /Mangal-Regular
 /MaturaMTScriptCapitals
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MSOutlook
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /OCRAExtended
 /OldEnglishTextMT
 /Onyx
 /PalaceScriptMT
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Papyrus-Regular
 /Parchment-Regular
 /Perpetua
 /Perpetua-Bold
 /Perpetua-BoldItalic
 /Perpetua-Italic
 /PerpetuaTitlingMT-Bold
 /PerpetuaTitlingMT-Light
 /Playbill
 /Poornut
 /PoorRichard-Regular
 /Porkys
 /PorkysHeavy
 /Pristina-Regular
 /PussycatSassy
 /PussycatSnickers
 /Raavi
 /RageItalic
 /Ravie
 /Rockwell
 /Rockwell-Bold
 /Rockwell-BoldItalic
 /Rockwell-Condensed
 /Rockwell-CondensedBold
 /Rockwell-ExtraBold
 /Rockwell-Italic
 /ScriptMTBold
 /ShowcardGothic-Reg
 /Shruti
 /SnapITC-Regular
 /Square721BT-Roman
 /Stencil
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /TwCenMT-Bold
 /TwCenMT-BoldItalic
 /TwCenMT-Condensed
 /TwCenMT-CondensedBold
 /TwCenMT-CondensedExtraBold
 /TwCenMT-Italic
 /TwCenMT-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Vrinda
 /Webdings
 /WeltronUrban
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX1a:2001
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

