
Artifact of Bounded Exhaustive Search
of Alloy Specification Repairs

Simón Gutiérrez Brida∗†, Germán Regis∗, Guolong Zheng‡,
Hamid Bagheri‡, ThanhVu Nguyen‡, Nazareno Aguirre∗†, Marcelo Frias†§
∗Department of Computer Science, FCEFQyN, University of Rı́o Cuarto, Argentina
†National Council for Scientific and Technical Research (CONICET), Argentina

‡Department of Computer Science & Engineering, University of Nebraska-Lincoln, USA
§Department of Software Engineering, Buenos Aires Institute of Technology, Argentina

Abstract—BeAFix is a tool and technique for automated repair
of faulty models written in Alloy, a declarative formal speci-
fication language based on first-order relational logic. BeAFix
takes a faulty Alloy model, i.e., an Alloy model with at least one
analysis command whose result is contrary to the developer’s
expectation, and a set of suspicious specification locations, and
explores the space of fix candidates consisting of all alternative
expressions for the indicated locations, that can be constructed by
bounded application of a family of mutation operations. BeAFix
can work with any kind of specification oracle, from Alloy test
cases to standard predicates and assertions typically found in
Alloy specifications, and is backed with a number of sound
pruning strategies, for efficient exploration of fix candidate search
spaces.

I. INTRODUCTION

Formal specifications have many applications in software
development. They can be used to precisely capture software
requirements as well as constraints and assumptions of the
problem domain, to express abstract formulations of software
designs, and to formally specify program properties such as
postconditions and invariants, among other uses. The precise
semantics associated with a formal notation makes it suitable
for automated analysis, that can help discover flaws in software
artifacts specified in the notation. The Alloy specification
language [1] is a formal specification language that exploits
this observation, and supports the automated analysis of speci-
fications via bounded validity and satisfiability checking, based
on SAT solving.

Correctly modeling a software artifact using a formal no-
tation such as Alloy can be challenging, and subtle errors
due to the incorrect use of the language may arise, even
from experienced users. Thus, techniques for automated repair,
such as those commonly found in the context of programming
languages, are also relevant for formal specification languages.
We present BeAFix, a tool (and technique) for automated
repair of Alloy specifications, with some distinguishing fea-
tures. Firstly, the tool supports any kind of specification oracle,
from Alloy test cases, to standard predicates or assertions,
typically found as part of Alloy specifications. Secondly,
BeAFix’s repair approach is bounded exhaustive, in the sense
that, given a number of suspicious locations, it considers all
possible fix candidate expressions that can be obtained by
applying mutations to the suspicious expressions, up to a

given bound. Thus, when the tool terminates, it either finds
a fix, or guarantees that no fix is possible by mutating the
suspicious locations up to the given bound, and with the
provided mutation operations. Alloy users are accustomed to
bounded exhaustive analyses, as this is the kind of analysis
associated with Alloy Analyzer, the tool for automatically
checking for bounded satisfiability or bounded validity of
properties. Since the space of fix candidates can be very large
for specifications with multiple suspicious locations, our tool
comes equipped with a number of sound pruning techniques,
that improve its efficiency in the automated repair process.

II. USING BEAFIX

BeAFix provides two different interfaces. Its command
line interface is better suited for batch specification repair,
for pipelining the tool with other techniques (e.g., for fault
localization), and for writing scripts to reproduce experiments.
The graphical user interface, on the other hand, offers a
more natural front-end for Alloy users, as it extends the
Alloy Analyzer, preserving its look and feel. The graphical
user interface also provides some further runtime information
during the repair process, such as the current fix candidate
being considered, etc.

Our tool receives a faulty Alloy specification, i.e., an Alloy
specification with at least one analysis command whose out-
come is contrary to the corresponding expectation (e.g., a pred-
icate expected to be satisfiable, which Alloy Analyzer deemed
unsatisfiable). BeAFix also requires the provision of one or
more suspicious locations, i.e., parts of the specification that
are assumed to be the cause of the defect in the specification.
These suspicious locations can mark formulas, lines, or other
subexpressions within the specification. However, signature
definitions, that define the domains of the specifications and
their structure, cannot be marked as suspicious. The suspicious
locations may be manually indicated by the developer, or
automatically generated, by resorting to some fault localization
technique for Alloy, such as FLACK or AlloyFL. Finally, the
tool also receives a bound, the maximum number of mutations
that can be applied to each suspicious location.

Suspicious locations are indicated in the Alloy specification
via a special mark, #m#. The marked expression can declare
context variables, which, intuitively, indicate certain bound



Fig. 1. BeAFix Graphical User Interface

variables that the suspicious expression may depend on. This is
in fact related to one of our pruning strategies, variabilization,
and we refer the reader to our technical paper [2] for further
details. For example, the marked expression {#m#() some
x : T | P[x]} considers the whole quantified formula as
a suspicious location, that BeAFix will mutate to produce fix
candidates (the quantifier, the type of the quantified variable
and the body of the formula, can all be mutated). Alternatively,
the expression some x : T | {#m#(x) P[x]} marks
the body of the quantified formula as suspicious, with x being
a context variable for the suspicious location; in this latter
case, BeAFix will only mutate the body of the quantification,
preserving as is both the quantifier and the type of variable x.

Our tool allows the user to set various parameters, including
a maxdepth (maximum number of mutations allowed per
marked expression) and a timeout (time budget, whose default
is “unlimited”). The two pruning techniques, variabilization
and partial repair, can be enabled and disabled as well
(disabled by default). Pruning techniques only work when the
faulty specification has more than one suspicious location.
Further details on how the pruning techniques operate, and
precisely when these apply, can be found in [2].

BeAFix is a Java application. Both the command line and
the GUI versions of BeAFix are distributed as jar bundles,
which can be found in the tool’s repository1, together with
detailed instructions on how to install and run the tool. The
tool and replication package are also available at a public
archive2. The command line version receives all the parameters
directly from the command line. The GUI version of BeAFix

1https://github.com/gregistecco/BeAFixICSE2021ArtifactEval
2https://doi.org/10.6084/m9.figshare.13626776.v2

is an extension of the Alloy Analyzer. Figure II summarizes
the additional features that BeAFix provides, with respect to
Alloy Analyzer. During repair, the GUI version displays the
fix candidates being considered (both the original expression
and corresponding mutated expression, for reference), and the
analysis verdicts (which parts of the oracles passed and failed,
etc.). A detailed report is shown when the repair process
finishes, and if a fix is found, it is written to a file. The re-
paired specification may contain redundant parentheses, due to
limitations in our current implementation of the specification
writer.

III. REPLICATING EXPERIMENTS

The experimental evaluation in [2] can be replicated by
installing BeAFix natively and downloading the case studies,
or using a Docker container, that we have prepared for the
convenience of the user. The Docker container includes the
tool already configured, the case studies, and scripts for
running the experiments. Instructions on how to replicate the
experiments, either natively or using the Docker container, can
be found in our tool’s repository. Notice that the number of
repair subjects is rather large, and thus reproducing all the
experiments in batch mode can take many hours. We provide
scripts to run experiments separately, or grouped by case study,
for convenience.

REFERENCES

[1] D. Jackson, Software Abstractions - Logic, Language, and Analysis. MIT
Press, 2006.

[2] S. Gutiérrez-Brida, G. Regis, G. Zheng, H. Bagheri, T. Nguyen,
N. Aguirre, and M. Frias, “Bounded exhaustive search of alloy spec-
ification repairs,” in Proceedings of the 43rd ACM/IEEE International
Conference on Software Engineering ICSE 2021, Virtual (originally
Madrid, Spain), 23-29 May 2021, 2021.

https://github.com/gregistecco/BeAFixICSE2021ArtifactEval
https://doi.org/10.6084/m9.figshare.13626776.v2

	Introduction
	Using BeAFix
	Replicating Experiments
	References

