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Fig. 4. Examples of erroneous behaviour on deep learning models. Top Row [18]: In a medical diagnosis system, a ‘‘Benign’’ tumour is misclassified as ‘‘Malignant’’
after adding a small amount of human-imperceptible perturbations; Second Row [19]: By just changing one pixel in a ‘‘Green-Light’’ image, a state-of-the-art DNN
misclassifies it as ‘‘Red-Light’’; Bottom Row [20]: In a sentiment analysis task for medical records, with two misspelt words, a well-trained deep learning model
classifies a ‘‘Positive’’ medical record as ‘‘Negative’’.

Example 4. As shown in the second row of Fig. 4, in classification
tasks, by adding a small amount of adversarial perturbation (w.r.t.
Lp-norm distance), the DNNs will misclassify an image of traffic
sign ‘‘red light’’ into ‘‘green light’’ [19,21]. In this case, the human
decision oracle H is approximated by stating that two inputs
within a very small Lp-norm distance are the same.

Example 5. In a DL-enabled end-to-end controller deployed in
autonomous vehicles, by adding some natural transformations
such as ‘‘rain’’, the controller will output an erroneous decision,
‘‘turning left’’, instead of a righteous decision, ‘‘turning right’’ [22].
However, it is clear that, from the human driver’s point of view,
adding ‘‘rain’’ should not change the driving decision of a car.

Example 6. As shown in the bottom row of Fig. 4, for medical
record, some minor misspellings – which happen very often in
the medical records – will lead to significant mis-classification on
the diagnosis result, from ‘‘Positive’’ to ‘‘Negative’’.

As we can see, these unsafe, or erroneous, phenomenon act-
ing on DNNs are essentially caused by the inconsistency of the
decision boundaries from DL models (that are learned from train-
ing datasets) and human oracles. This inevitably raises signifi-
cant concerns on whether DL models can be safely applied in
safety-critical domains.

In the following, we review a few safety properties that have
been studied in the literature.

3.2. Local robustness property

Robustness requires that the decision of a DNN is invariant
against small perturbations. The following definition is adapted
from that of Huang et al. [23].

Definition 8 (Local Robustness). Given a DNN N with its asso-
ciated function f , and an input region ⌘ ✓ [0, 1]s1 , the (un-
targeted) local robustness of f on ⌘ is defined as

Robust(f , ⌘) , 8x 2 ⌘, 9 l 2 [1..sK ], 8j 2 [1..sK ] : fl(x) � fj(x) (9)

For targeted local robustness of a label j, it is defined as

Robustj(f , ⌘) , 8x 2 ⌘, 9 l 2 [1..sK ] : fl(x) > fj(x) (10)

Intuitively, local robustness states that all inputs in the region
⌘ have the same class label. More specifically, there exists a label
l such that, for all inputs x in region ⌘, and other labels j, the DNN
believes that x is more possible to be in class l than in any class
j. Moreover, targeted local robustness means that a specific label
j cannot be perturbed for all inputs in ⌘; specifically, all inputs x
in ⌘ have a class l 6= j, which the DNN believes is more possible
than the class j. Usually, the region ⌘ is defined with respect to
an input x and a norm Lp, as in Definition 5. If so, it means that
all inputs in ⌘ have the same class as input x. For targeted local
robustness, it is required that none of the inputs in the region ⌘
is classified as a given label j.

In the following, we define a test oracle for the local robust-
ness property. Note that, all existing testing approaches surveyed
relate to local robustness, and therefore we only provide the test
oracle for local robustness.

Definition 9 (Test Oracle of Local Robustness Property). Let D be
a set of correctly-labelled inputs. Given a norm distance Lp and a
real number d, a test case (x1, . . . , xk) 2 T passes the test oracle’s
local robustness property, or oracle for simplicity, if

81  i  k9 x0 2 D : xi 2 ⌘(x0, Lp, d) (11)

∀i ∈ {0 . . . |X | − 1}. Xi − Yi ≤ 0.1 ⇒ class(X ) ≡ class(Y ) (1)

if corresponding pixels of two images X and Y are not different by more
than 0.1, then X and Y should have the same classification

10
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Safety Properties

ACAS: air traffic collision system, detects intruder and decides action.

dintru ≥ 55947 ∧ vown ≥ 1145 ∧ vintru ≤ 60 ⇒ rnothing ≤ τ

if intruder is distant and significantly slower than us, then we do nothing
(i.e., below a certain threshold)
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Intuitively, local robustness states that all inputs in the region
⌘ have the same class label. More specifically, there exists a label
l such that, for all inputs x in region ⌘, and other labels j, the DNN
believes that x is more possible to be in class l than in any class
j. Moreover, targeted local robustness means that a specific label
j cannot be perturbed for all inputs in ⌘; specifically, all inputs x
in ⌘ have a class l 6= j, which the DNN believes is more possible
than the class j. Usually, the region ⌘ is defined with respect to
an input x and a norm Lp, as in Definition 5. If so, it means that
all inputs in ⌘ have the same class as input x. For targeted local
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In the following, we define a test oracle for the local robust-
ness property. Note that, all existing testing approaches surveyed
relate to local robustness, and therefore we only provide the test
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Definition 9 (Test Oracle of Local Robustness Property). Let D be
a set of correctly-labelled inputs. Given a norm distance Lp and a
real number d, a test case (x1, . . . , xk) 2 T passes the test oracle’s
local robustness property, or oracle for simplicity, if

81  i  k9 x0 2 D : xi 2 ⌘(x0, Lp, d) (11)

Well-trained, e.g., 97% accuracy, DNNs are fine for most tasks

But not enough for mission-critical tasks, e.g., self-driving cars, air traffic
collision control

Testing can find counterexamples (e.g., adversarial attacks)

Testing shows the existence of errors, not its absence (Dijkstra)

Formal Verification Can Help!
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Software Verification

Provide formal guarantee that a system really has no specific type of errors

Mature field in CS/Logics with lots of powerful techniques and tools

Automated Theorem Proving
Constraint Solving (e.g., SAT/SMT solving)
Model Checking
Abstract Interpretation, ...

Employed in mission-critical systems, e.g., avionics, medical devices,
Windows, Clouds system (AWS)
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The problem of Deep Neural Network verification
Question: Given a network N and a property p, does N have p?

p often has the form P ⇒ Q (precondition P, postcondition Q)

Answer: Yes / No

Simple DNN with ReLU

x1 x3

x2 x4

x5
-0.5

-1.0

1.0

1.0

-1.0-0.5

-1.0

1.0

E.g., x3 = max(−1x1 +−0.5x2, 0)

Valid: x1 ∈ [−1, 1] ∧ x2 ∈ [−2, 2] ⇒ x5 ≤ 0

Invalid: x1 ∈ [−1, 1] ∧ x2 ∈ [−2, 2] ⇒ x5 > 0
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developments in the formal veri�cation of DNNs [13], a topic which
has received considerable attention of late [7, 8, 11, 13, 15, 34].

Verily can be used to establish that speci�ed requirements from
a deep-RL-driven system are satis�ed. This is important, e.g., for
determining at what point a deep-RL-based system is “su�ciently
trained” (similar to acceptance tests for traditional software), and
for ensuring that a system achieves desired service-level objectives.
Importantly, when Verily determines that the system does not sat-
isfy a certain requirement, it provides a concrete scenario (a counter
example) to demonstrate this. These counter examples can be used
to guide changes to the DNN architecture and/or to identify cir-
cumstances in which the deep-RL-generated decisions should be
overridden.

We evaluate Verily on three deep-RL-driven systems: the Pen-
sieve adaptive video streaming scheme [24], the DeepRM scheduler
for cloud resource management [23], and the Custard Internet con-
gestion controller [12]. We formulate natural requirements for each
of these systems and apply Verily to determine whether these are
always satis�ed and, if not, generate counter examples. Our pre-
liminary evaluation results expose several problems in the tested
systems, and suggest that the formal veri�cation approach (and,
more concretely, the Verily tool) can play an important role in the
design and deployment of safer deep-RL-based systems.

2 BACKGROUND
2.1 Deep-RL-Driven Systems
In RL [31], an agent observes, at each discrete time step t 2 0, 1, ...,
a state of its environment st and selects an action at . After selecting
its action, the agent observes a reward rt , representing its loss/gain
from selectingat . The agent’s goal is to choose a policy � , i.e., a map-
ping of states to actions, which maximizes the expected cumulative
discounted return Rt = E

⇥ Õ
t �

t · rt
⇤
, for � 2 ⇥

0, 1
�
. The parameter

� is termed the discount factor. Recent advances in deep RL employ
deep neural networks to approximate the optimal � [26, 29].

RL provides a useful abstraction for sequential decision mak-
ing and, in particular, is applicable also when (i) the agent may
only possess partial information about the current state; and (ii)
the implications of choosing an action may become clear only in
hindsight (“delayed rewards”).

To illustrate the promise of utilizing deep RL for system de-
sign, we brie�y discuss its recent application to HTTP-based video
streaming [24]. To optimize user quality of experience (QoE), video
clients employ adaptive bitrate (ABR) protocols to dynamically
select the bitrates (resolutions) of requested video chunks (say, 4-
second video segments). ABR protocols map local observables such
as the occupancy of the client’s playback bu�er and the download
times of prior video chunks, to choices of bitrates for upcoming
video chunks. Today’s protocols typically rely on “handwired” map-
pings from local observables to selected bitrates, devised by human
experts. In contrast, the deep-RL-driven Pensieve [24] ABR protocol
automatically learns high-performance bitrate selection policies
from empirical data. Pensieve does so by testing the implications of
di�erent bitrate selections for performance, as captured by a reward
function that re�ects QoE goals such as sending at high bitrates
and avoiding client video rebu�ering and jitter in bitrates. A DNN
is employed to map observables to bitrate selections, thus enabling

Figure 1: The neural network veri�cation scheme.

Pensieve to e�ciently learn complex ABR policies. Experimental
and empirical evaluations suggest that Pensieve outperforms the
widely used handcrafted algorithms, even in environments with
di�erent characteristics than those of its training environment.

2.2 Deep Neural Network Veri�cation
Following the rise in popularity of DNNs, the veri�cation commu-
nity has begun addressing the need to verify neural networks [3, 7,
8, 11, 13–15, 18, 18, 34]. Because neural networks are constructed
from a small set of relatively simple arithmetical operations, the
DNN veri�cation problem is decidable (which is often not the case
for veri�cation of manually crafted code). However, although decid-
able, DNN veri�cation is computationally complex (NP-complete)
even in simple cases [13], and scalability is a major hindrance for
veri�cation tools. Despite this, veri�cation technology is rapidly
improving and, as demonstrated by us and by others, existing tools
are already su�cient for tacking real-world problems of interest.

A DNN veri�cation query is comprised of the following: (i) a
neural network N ; (ii) an input property P ; and (iii) an output prop-
erty Q . A veri�cation engine then tries to answer the question “does
there exist an input vector x , such that P(x) holds and Q(N (x)) also
holds?”, where N (x) is the output vector that the neural network
produces for input x . In other words, the veri�cation engine seeks a
particular input x that satis�es the input property P , and is mapped
by the neural network to an output that satis�es the output prop-
erty Q . The veri�cation process has two possible outcomes: (1) an
unsat result, indicating that no such input exists; and (2) a sat result,
accompanied by a concrete input x0 such that P(x0) and Q(N (x0))
hold. See Fig. 1 for an illustration.Q typically expresses the negation
of the desired property, and thus an unsat result indicates that the
property holds, whereas sat indicates a violation that occurs for x0.

An important distinction between veri�cation and other com-
mon approaches for quality assurance, such as testing and simula-
tion, is that a single veri�cation query can provide formal guaran-
tees about the behavior of the system for in�nitely many inputs.
This can help to ensure, e.g., that a DNN operates correctly when
presented with inputs that were not part of its training or validation
sets. In some cases, veri�cation queries can even be used to explain
how certain decisions are reached by the DNN [4].

84

Transform DNN verification into a constraint (satisfiability) problem

UNSAT: p is a property of N
SAT: p is not a property of N (also provide counterexamples)
TIMEOUT

Solve the constraint, e.g., using MILP solvers

Scalability is a Huge problem (many TIMEOUTs)

Complexity O(2N), where N is the number of neurons

15
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trained” (similar to acceptance tests for traditional software), and
for ensuring that a system achieves desired service-level objectives.
Importantly, when Verily determines that the system does not sat-
isfy a certain requirement, it provides a concrete scenario (a counter
example) to demonstrate this. These counter examples can be used
to guide changes to the DNN architecture and/or to identify cir-
cumstances in which the deep-RL-generated decisions should be
overridden.

We evaluate Verily on three deep-RL-driven systems: the Pen-
sieve adaptive video streaming scheme [24], the DeepRM scheduler
for cloud resource management [23], and the Custard Internet con-
gestion controller [12]. We formulate natural requirements for each
of these systems and apply Verily to determine whether these are
always satis�ed and, if not, generate counter examples. Our pre-
liminary evaluation results expose several problems in the tested
systems, and suggest that the formal veri�cation approach (and,
more concretely, the Verily tool) can play an important role in the
design and deployment of safer deep-RL-based systems.

2 BACKGROUND
2.1 Deep-RL-Driven Systems
In RL [31], an agent observes, at each discrete time step t 2 0, 1, ...,
a state of its environment st and selects an action at . After selecting
its action, the agent observes a reward rt , representing its loss/gain
from selectingat . The agent’s goal is to choose a policy � , i.e., a map-
ping of states to actions, which maximizes the expected cumulative
discounted return Rt = E

⇥ Õ
t �

t · rt
⇤
, for � 2 ⇥

0, 1
�
. The parameter

� is termed the discount factor. Recent advances in deep RL employ
deep neural networks to approximate the optimal � [26, 29].

RL provides a useful abstraction for sequential decision mak-
ing and, in particular, is applicable also when (i) the agent may
only possess partial information about the current state; and (ii)
the implications of choosing an action may become clear only in
hindsight (“delayed rewards”).

To illustrate the promise of utilizing deep RL for system de-
sign, we brie�y discuss its recent application to HTTP-based video
streaming [24]. To optimize user quality of experience (QoE), video
clients employ adaptive bitrate (ABR) protocols to dynamically
select the bitrates (resolutions) of requested video chunks (say, 4-
second video segments). ABR protocols map local observables such
as the occupancy of the client’s playback bu�er and the download
times of prior video chunks, to choices of bitrates for upcoming
video chunks. Today’s protocols typically rely on “handwired” map-
pings from local observables to selected bitrates, devised by human
experts. In contrast, the deep-RL-driven Pensieve [24] ABR protocol
automatically learns high-performance bitrate selection policies
from empirical data. Pensieve does so by testing the implications of
di�erent bitrate selections for performance, as captured by a reward
function that re�ects QoE goals such as sending at high bitrates
and avoiding client video rebu�ering and jitter in bitrates. A DNN
is employed to map observables to bitrate selections, thus enabling

Figure 1: The neural network veri�cation scheme.

Pensieve to e�ciently learn complex ABR policies. Experimental
and empirical evaluations suggest that Pensieve outperforms the
widely used handcrafted algorithms, even in environments with
di�erent characteristics than those of its training environment.

2.2 Deep Neural Network Veri�cation
Following the rise in popularity of DNNs, the veri�cation commu-
nity has begun addressing the need to verify neural networks [3, 7,
8, 11, 13–15, 18, 18, 34]. Because neural networks are constructed
from a small set of relatively simple arithmetical operations, the
DNN veri�cation problem is decidable (which is often not the case
for veri�cation of manually crafted code). However, although decid-
able, DNN veri�cation is computationally complex (NP-complete)
even in simple cases [13], and scalability is a major hindrance for
veri�cation tools. Despite this, veri�cation technology is rapidly
improving and, as demonstrated by us and by others, existing tools
are already su�cient for tacking real-world problems of interest.

A DNN veri�cation query is comprised of the following: (i) a
neural network N ; (ii) an input property P ; and (iii) an output prop-
erty Q . A veri�cation engine then tries to answer the question “does
there exist an input vector x , such that P(x) holds and Q(N (x)) also
holds?”, where N (x) is the output vector that the neural network
produces for input x . In other words, the veri�cation engine seeks a
particular input x that satis�es the input property P , and is mapped
by the neural network to an output that satis�es the output prop-
erty Q . The veri�cation process has two possible outcomes: (1) an
unsat result, indicating that no such input exists; and (2) a sat result,
accompanied by a concrete input x0 such that P(x0) and Q(N (x0))
hold. See Fig. 1 for an illustration.Q typically expresses the negation
of the desired property, and thus an unsat result indicates that the
property holds, whereas sat indicates a violation that occurs for x0.

An important distinction between veri�cation and other com-
mon approaches for quality assurance, such as testing and simula-
tion, is that a single veri�cation query can provide formal guaran-
tees about the behavior of the system for in�nitely many inputs.
This can help to ensure, e.g., that a DNN operates correctly when
presented with inputs that were not part of its training or validation
sets. In some cases, veri�cation queries can even be used to explain
how certain decisions are reached by the DNN [4].

84

Transform DNN verification into a constraint (satisfiability) problem

UNSAT: p is a property of N
SAT: p is not a property of N (also provide counterexamples)
TIMEOUT

Solve the constraint, e.g., using MILP solvers

Scalability is a Huge problem (many TIMEOUTs)

Complexity O(2N), where N is the number of neurons
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Abstraction Techniques

Overapproximate computation (e.g., ReLU) using abstract domains

interval, zonotopes, polytopes

Zonotope

Polytope

Interval

Scale well, but loose precision (producing spurious cex’s)

Claiming a property is violated when it is not
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NeuralSAT: Our DNN Constraint Solver

To prove N ⇒ (P ⇒ Q)

Call NeuralSAT(N ∧ P ∧ ¬Q)

Return UNSAT or SAT (and counterexample)

Analyze-
ConflictDecide

BCP Backtrack

DNN + 
Property

Boolean 
Abstraction

SAT UNSATDEDUCTION

1 Abstract as a boolean satisfiability problem

2 Iteratively search for satisfying assignment

Use heuristics to make decision
Use propagation to communicate learn
information
Analyze conflicts, learn conflict
information, and backtrack
Use a theory solver to quickly deduce
unsatisfiability (UNSAT)
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Example: Simple DNN with ReLU activation

x1 x3

x2 x4

x5
-0.5

-1.0

1.0

1.0

-1.0-0.5

-1.0

1.0

To prove f : x1 ∈ [−1, 1] ∧ x2 ∈ [−2, 2] ⇒ x5 ≤ 0:

Use NeuralSAT to check if ¬f is satisfiable

NeuralSAT(N ∧ x1 ∈ [−1, 1] ∧ x2 ∈ [−2, 2] ∧ x5 > 0)

NeuralSAT returns UNSAT, indicating f is valid
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Analyze-
ConflictDecide

BCP Backtrack

DNN + 
Property

Boolean 
Abstraction

SAT UNSATDEDUCTION

x1 x3

x2 x4

x5
-0.5

-1.0

1.0

1.0

-1.0-0.5

-1.0

1.0

x1 ∈ [−1, 1], x2 ∈ [−2, 2], x5 > 0

Boolean Abstraction
Create 2 boolean variables v3 and v4 to
represent activation status of x3, x4

v3 = T means x3 is active,
−x1 − 0.5x2 − 1 > 0

Form two clauses {v3 ∨ v3 ; v4 ∨ v4}

Find boolean values for v3, v4 that satisfies
the clauses and their implications
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Analyze-
ConflictDecide

BCP Backtrack

DNN + 
Property

Boolean 
Abstraction

SAT UNSATDEDUCTION

x1 x3

x2 x4

x5
-0.5

-1.0

1.0

1.0

-1.0-0.5

-1.0

1.0

x1 ∈ [−1, 1], x2 ∈ [−2, 2], x5 > 0

Iteration 1
Use abstraction to approximate
upperbound x5 ≤ 0.55 (from
x1 ∈ [−1, 1], x2 ∈ [−2, 2])

Deduce x5 > 0 might be feasible

Decide v3 = F (randomly)

new constraint −x1 − 0.5x2 − 1 < 0
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Analyze-
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BCP Backtrack

DNN + 
Property

Boolean 
Abstraction

SAT UNSATDEDUCTION

x1 x3

x2 x4

x5
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1.0

1.0

-1.0-0.5

-1.0

1.0

x1 ∈ [−1, 1], x2 ∈ [−2, 2], x5 > 0

Iteration 2
Approximate upperbound x5 ≤ 0 (due to
additional constraint from v3 = F )

Deduce x5 > 0 infeasible: CONFLICT

Analyze conflict, backtrack and erase
prev. decision v3 = F

Learn new clause v3

v3 will have to be T in next iteration
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x1 ∈ [−1, 1], x2 ∈ [−2, 2], x5 > 0

Iteration 3
Decide v3 = T (BCP, due to learned
clause v3)

new constraint −x1 − 0.5x2 − 1 > 0

Approximate new upperbound for x5
(using additional constraint from v3 = T )

Deduce x5 > 0 might be feasible

Decide v4 = T (randomly)

...
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1.0

-1.0-0.5

-1.0

1.0

x1 ∈ [−1, 1], x2 ∈ [−2, 2], x5 > 0

After several iterations
Learn clauses {v3, v3 ∨ v4, v3 ∨ v4}

Deduce not possible to satisfy the clauses

Return UNSAT

Cannot find inputs satisfying
x1 ∈ [−1, 1], x2 ∈ [−2, 2] that cause N to
return x5 > 0
Hence, x5 ≤ 0 holds (i.e., the original
property is valid)
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Benchmark Rank Verifier Score Percent Verify Falsify

ACAS Xu (13K)

1 NeuralSAT 1437 100.0% 139 47
1 nnenum 1437 100.0% 139 47
3 αβ-CROWN 1436 99.9% 139 46
4 Marabou 1426 99.2% 138 46
5 MN-BaB 1097 76.3% 105 47

MNISTFC (532K)

1 αβ-CROWN 582 100.0% 56 22
2 NeuralSAT 573 98.5% 55 23
3 nnenum 403 69.2% 39 13
4 MN-BaB 370 63.6% 36 10
4 Marabou 370 63.6% 35 20

CIFAR2020 (2.5M)

1 NeuralSAT 1533 100.0% 149 43
2 αβ-CROWN 1522 99.3% 148 42
3 MN-BaB 1486 96.9% 145 36
5 nnenum 518 33.8% 50 18

RESNET_AB (354K)

1 NeuralSAT 513 100.0% 23 23
1 αβ-CROWN 513 100.0% 49 23
3 MN-BaB 363 70.8% 34 23

MNIST_GDVB (3M)

1 NeuralSAT 480 100.0% 48 0
2 αβ-CROWN 400 83.3% 40 0
3 MN-BaB 200 41.7% 20 0

Overall

1 NeuralSAT 4536 100.0% 440 136
2 αβ-CROWN 4453 98.2% 432 133
3 MN-BaB 3516 77.5% 340 116
4 nnenum 2358 52.0% 228 78
5 Marabou 1796 39.6% 173 66



Key Ideas
Formalization of DNN verification

Analyze, learn, and propagate information (significantly reduce search space)

Dedicated DNN-specific theory solver (enable fast proving)

New approach; open doors to new research on heuristics, optimizations
specific to DNNs

Usability Features
Standard: inputs (ONNX) and outputs (SAT/UNSAT/TIMEOUT)

Versatile

Support Feedforward, Convolutional, Residual Networks
Support ReLU, Sigmoid, Tanh, Power, etc

Scale well to large networks with millions of neurons

Active development & frequent Updates

Fully automatic (require little configurations from users)
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Outline

AI Safety Verification
Highly Configurable and Build Systems
Invariant Generation and Program Repair
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Linux/Unix Build Systems Modern software are
highly-configurable

Allow for customization and
flexibility
Can have misconfigurations (5th

on OWASP most critical security
risks)

Challenge: huge search space
(213000 for Linux)

Approach: use symbolic execution
to compute path conditions
mapping to built files

# of files is very small
Solve path conds to find build
issues and misconfigurations

27



Linux/Unix Build Systems Modern software are
highly-configurable

Allow for customization and
flexibility
Can have misconfigurations (5th

on OWASP most critical security
risks)

Challenge: huge search space
(213000 for Linux)

Approach: use symbolic execution
to compute path conditions
mapping to built files

# of files is very small
Solve path conds to find build
issues and misconfigurations

27



Outline

AI Safety Verification
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Invariant Generation (DIG)

def intdiv(x, y):
q = 0
r = x
while r ≥ y:
a = 1
b = y
while [??] r ≥ 2b:

a = 2a
b = 2b

r = r - b
q = q + a
[??]
return q

Discover invariant properties
at certain program locations

Answer the question “what
does this program do ?”

Approach: use template and
dynamic analysis

Program Repair (GenProg)

def intdiv(x, y):
q = 0
r = x

while r ��7
̸=

≥ y:
a = 1

b = ���
3∗y

y
while r ≥ 2b:

a = 2a
b = 2b

r = r - b

q = q ��*
−2∗a

+a

return q

Localize errors and modify code
to fix bugs

Approach: use dynamic and static
analyses to identify, create, and
validate patches
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Awards and Impacts
AI Verification

NSF CAREER (’23—’28)
Amazon Research Award’23
featured in SIGBED
ranked 4th in VNN-COMP’23 (would be 1st now)

Highly-Configurable and Build System Analysis

NSF CISE CRII ’20
NSF Formal Methods in the Field (FMiT) ’23
Meta/Facebook unrestricted gift
Adoption: used internally at Meta Whatsapp to analyze build issues

Invariant Generation and Automatic Program Repair

10-year ACM SIGSOFT/IEEE TCSE Most Influential Paper Award’19
10-year ACM SIGEVO Most Impact Award’19
NSF Medium Collaborative grant ’21–’25
Army Office of Research ’18–’21
Adoption

SV-COMP included benchmarks created by DIG
GrammaTech integrated DIG in Mnemosyne
Facebook and GrammaTech used GenProg in multiple projects
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Meta/Facebook unrestricted gift
Adoption: used internally at Meta Whatsapp to analyze build issues

Invariant Generation and Automatic Program Repair

10-year ACM SIGSOFT/IEEE TCSE Most Influential Paper Award’19
10-year ACM SIGEVO Most Impact Award’19
NSF Medium Collaborative grant ’21–’25
Army Office of Research ’18–’21
Adoption
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Future Directions

Currently

focuses on existing problems (robustness, safety)

tested with existing benchmarks

Challenges & Opportunities

new problems

what properties should AI/ML have? (e.g., fairness, privacy, security)
how to formally define such specifications?

new benchmarks (e.g., real-world, industrial data)

new analyses (e.g., automatic property inference and repair for NNs)
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Funding

8 grants: 4 NSF (3 sole-PI, 1 PI), 1 Defense (Co-PI), 2 industry (sole-PI), 1 internal (sole-PI)

Total $2.65M; my share $1.5M, as PI $1.3M
At GMU (total $1.9M, my/GMU share $1.1M, as PI $1.1M)
Young Faculty: NSF CRII’20, NSF CAREER’23, Amazon Research Award’23

Publications

27 journals/confs. papers since ’16 (11 since joining GMU in ’21)

20 papers with students (9 with undergrad)

Google: 3617 citations (h-index 17 i10-index 24)
SIGSOFT MIP paper award, SIGEVO Impact paper award

Students Mentoring

Current: 3 Ph.D RA’s, 2 undergrads
Graduated (at UNL): 1 PhD, 2 Masters, 11 undergrads (2 Outstanding Undergrad Research
Awards)

Teaching

At GMU (2 years): 1 grad (2x, required, SWE619), 1 undergrad (SWE419), 1 seminar (CS695)
Developed online SWE619 course with Wiley (went live in Spring’23)

Services

Regularly serve in well-known confs/journals, 7 NSF panels in past 5 consec. yrs
At GMU: program director of MS SWE; organize Virtual Open House; maintain CSRankings DB
(GMU is ranked 32!)
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