
Improving the Reliability and Safety of Systems
Toward Scalable Deep Neural Network Verification

ThanhVu (Vu) Nguyen

CEC P&T Seminar, Nov 12 2023

1

My Background

Academic

2013: PhD in CS, Univ of New Mexico–Albuquerque

2014: Postdoc, Univ of Maryland-College Park

2016: Assistant Prof., Univ of Nebraska-Lincoln

2021: Assistant Prof., George Mason University

Govt and Industry

2005–2006, 2012: Naval Research Lab, Washington DC

2007: Lockheed Martin, New Jersey

2

My Research

Software Engineering, Formal Methods, Programming Languages

Invariant Generation and Automatic Program Repair

since ’08, during PhD study

Highly-Configurable and Build System Analysis

since ’15, during postdoc

AI Verification

since ’22, new research direction

Sponsor
NSF (4x): CRII’20, Med Collab. ’21, CAREER’23, FMIT’23

Defense (1x): Army Research ’18

Industry (2x): Facebook’23 and Amazon’23

Internal (1x): UNL Seed’20

3

My Research

Software Engineering, Formal Methods, Programming Languages

Invariant Generation and Automatic Program Repair

since ’08, during PhD study

Highly-Configurable and Build System Analysis

since ’15, during postdoc

AI Verification

since ’22, new research direction

Sponsor
NSF (4x): CRII’20, Med Collab. ’21, CAREER’23, FMIT’23

Defense (1x): Army Research ’18

Industry (2x): Facebook’23 and Amazon’23

Internal (1x): UNL Seed’20

3

DynaROARS
dynaroars.cs.gmu.edu

Didier Linhan Hai Guolong
PhD’22 at UNL

https://dynaroars.cs.gmu.edu

Outline

AI Safety Verification
Highly Configurable and Build Systems
Invariant Generation and Program Repair

5

DNN EVERYWHERE

6

DNN Problems

7

8

9

Robustness Properties8 X. Huang, D. Kroening, W. Ruan et al. / Computer Science Review 37 (2020) 100270

Fig. 4. Examples of erroneous behaviour on deep learning models. Top Row [18]: In a medical diagnosis system, a ‘‘Benign’’ tumour is misclassified as ‘‘Malignant’’
after adding a small amount of human-imperceptible perturbations; Second Row [19]: By just changing one pixel in a ‘‘Green-Light’’ image, a state-of-the-art DNN
misclassifies it as ‘‘Red-Light’’; Bottom Row [20]: In a sentiment analysis task for medical records, with two misspelt words, a well-trained deep learning model
classifies a ‘‘Positive’’ medical record as ‘‘Negative’’.

Example 4. As shown in the second row of Fig. 4, in classification
tasks, by adding a small amount of adversarial perturbation (w.r.t.
Lp-norm distance), the DNNs will misclassify an image of traffic
sign ‘‘red light’’ into ‘‘green light’’ [19,21]. In this case, the human
decision oracle H is approximated by stating that two inputs
within a very small Lp-norm distance are the same.

Example 5. In a DL-enabled end-to-end controller deployed in
autonomous vehicles, by adding some natural transformations
such as ‘‘rain’’, the controller will output an erroneous decision,
‘‘turning left’’, instead of a righteous decision, ‘‘turning right’’ [22].
However, it is clear that, from the human driver’s point of view,
adding ‘‘rain’’ should not change the driving decision of a car.

Example 6. As shown in the bottom row of Fig. 4, for medical
record, some minor misspellings – which happen very often in
the medical records – will lead to significant mis-classification on
the diagnosis result, from ‘‘Positive’’ to ‘‘Negative’’.

As we can see, these unsafe, or erroneous, phenomenon act-
ing on DNNs are essentially caused by the inconsistency of the
decision boundaries from DL models (that are learned from train-
ing datasets) and human oracles. This inevitably raises signifi-
cant concerns on whether DL models can be safely applied in
safety-critical domains.

In the following, we review a few safety properties that have
been studied in the literature.

3.2. Local robustness property

Robustness requires that the decision of a DNN is invariant
against small perturbations. The following definition is adapted
from that of Huang et al. [23].

Definition 8 (Local Robustness). Given a DNN N with its asso-
ciated function f , and an input region ⌘ ✓ [0, 1]s1 , the (un-
targeted) local robustness of f on ⌘ is defined as

Robust(f , ⌘) , 8x 2 ⌘, 9 l 2 [1..sK], 8j 2 [1..sK] : fl(x) � fj(x) (9)

For targeted local robustness of a label j, it is defined as

Robustj(f , ⌘) , 8x 2 ⌘, 9 l 2 [1..sK] : fl(x) > fj(x) (10)

Intuitively, local robustness states that all inputs in the region
⌘ have the same class label. More specifically, there exists a label
l such that, for all inputs x in region ⌘, and other labels j, the DNN
believes that x is more possible to be in class l than in any class
j. Moreover, targeted local robustness means that a specific label
j cannot be perturbed for all inputs in ⌘; specifically, all inputs x
in ⌘ have a class l 6= j, which the DNN believes is more possible
than the class j. Usually, the region ⌘ is defined with respect to
an input x and a norm Lp, as in Definition 5. If so, it means that
all inputs in ⌘ have the same class as input x. For targeted local
robustness, it is required that none of the inputs in the region ⌘
is classified as a given label j.

In the following, we define a test oracle for the local robust-
ness property. Note that, all existing testing approaches surveyed
relate to local robustness, and therefore we only provide the test
oracle for local robustness.

Definition 9 (Test Oracle of Local Robustness Property). Let D be
a set of correctly-labelled inputs. Given a norm distance Lp and a
real number d, a test case (x1, . . . , xk) 2 T passes the test oracle’s
local robustness property, or oracle for simplicity, if

81  i  k9 x0 2 D : xi 2 ⌘(x0, Lp, d) (11)

∀i ∈ {0 . . . |X | − 1}. Xi − Yi ≤ 0.1 ⇒ class(X) ≡ class(Y) (1)

if corresponding pixels of two images X and Y are not different by more
than 0.1, then X and Y should have the same classification

10

Robustness Properties8 X. Huang, D. Kroening, W. Ruan et al. / Computer Science Review 37 (2020) 100270

Fig. 4. Examples of erroneous behaviour on deep learning models. Top Row [18]: In a medical diagnosis system, a ‘‘Benign’’ tumour is misclassified as ‘‘Malignant’’
after adding a small amount of human-imperceptible perturbations; Second Row [19]: By just changing one pixel in a ‘‘Green-Light’’ image, a state-of-the-art DNN
misclassifies it as ‘‘Red-Light’’; Bottom Row [20]: In a sentiment analysis task for medical records, with two misspelt words, a well-trained deep learning model
classifies a ‘‘Positive’’ medical record as ‘‘Negative’’.

Example 4. As shown in the second row of Fig. 4, in classification
tasks, by adding a small amount of adversarial perturbation (w.r.t.
Lp-norm distance), the DNNs will misclassify an image of traffic
sign ‘‘red light’’ into ‘‘green light’’ [19,21]. In this case, the human
decision oracle H is approximated by stating that two inputs
within a very small Lp-norm distance are the same.

Example 5. In a DL-enabled end-to-end controller deployed in
autonomous vehicles, by adding some natural transformations
such as ‘‘rain’’, the controller will output an erroneous decision,
‘‘turning left’’, instead of a righteous decision, ‘‘turning right’’ [22].
However, it is clear that, from the human driver’s point of view,
adding ‘‘rain’’ should not change the driving decision of a car.

Example 6. As shown in the bottom row of Fig. 4, for medical
record, some minor misspellings – which happen very often in
the medical records – will lead to significant mis-classification on
the diagnosis result, from ‘‘Positive’’ to ‘‘Negative’’.

As we can see, these unsafe, or erroneous, phenomenon act-
ing on DNNs are essentially caused by the inconsistency of the
decision boundaries from DL models (that are learned from train-
ing datasets) and human oracles. This inevitably raises signifi-
cant concerns on whether DL models can be safely applied in
safety-critical domains.

In the following, we review a few safety properties that have
been studied in the literature.

3.2. Local robustness property

Robustness requires that the decision of a DNN is invariant
against small perturbations. The following definition is adapted
from that of Huang et al. [23].

Definition 8 (Local Robustness). Given a DNN N with its asso-
ciated function f , and an input region ⌘ ✓ [0, 1]s1 , the (un-
targeted) local robustness of f on ⌘ is defined as

Robust(f , ⌘) , 8x 2 ⌘, 9 l 2 [1..sK], 8j 2 [1..sK] : fl(x) � fj(x) (9)

For targeted local robustness of a label j, it is defined as

Robustj(f , ⌘) , 8x 2 ⌘, 9 l 2 [1..sK] : fl(x) > fj(x) (10)

Intuitively, local robustness states that all inputs in the region
⌘ have the same class label. More specifically, there exists a label
l such that, for all inputs x in region ⌘, and other labels j, the DNN
believes that x is more possible to be in class l than in any class
j. Moreover, targeted local robustness means that a specific label
j cannot be perturbed for all inputs in ⌘; specifically, all inputs x
in ⌘ have a class l 6= j, which the DNN believes is more possible
than the class j. Usually, the region ⌘ is defined with respect to
an input x and a norm Lp, as in Definition 5. If so, it means that
all inputs in ⌘ have the same class as input x. For targeted local
robustness, it is required that none of the inputs in the region ⌘
is classified as a given label j.

In the following, we define a test oracle for the local robust-
ness property. Note that, all existing testing approaches surveyed
relate to local robustness, and therefore we only provide the test
oracle for local robustness.

Definition 9 (Test Oracle of Local Robustness Property). Let D be
a set of correctly-labelled inputs. Given a norm distance Lp and a
real number d, a test case (x1, . . . , xk) 2 T passes the test oracle’s
local robustness property, or oracle for simplicity, if

81  i  k9 x0 2 D : xi 2 ⌘(x0, Lp, d) (11)

∀i ∈ {0 . . . |X | − 1}. Xi − Yi ≤ 0.1 ⇒ class(X) ≡ class(Y) (1)

if corresponding pixels of two images X and Y are not different by more
than 0.1, then X and Y should have the same classification

10

Safety Properties

ACAS: air traffic collision system, detects intruder and decides action.

dintru ≥ 55947 ∧ vown ≥ 1145 ∧ vintru ≤ 60 ⇒ rnothing ≤ τ

if intruder is distant and significantly slower than us, then we do nothing
(i.e., below a certain threshold)

11

Safety Properties

ACAS: air traffic collision system, detects intruder and decides action.

dintru ≥ 55947 ∧ vown ≥ 1145 ∧ vintru ≤ 60 ⇒ rnothing ≤ τ

if intruder is distant and significantly slower than us, then we do nothing
(i.e., below a certain threshold)

11

8 X. Huang, D. Kroening, W. Ruan et al. / Computer Science Review 37 (2020) 100270

Fig. 4. Examples of erroneous behaviour on deep learning models. Top Row [18]: In a medical diagnosis system, a ‘‘Benign’’ tumour is misclassified as ‘‘Malignant’’
after adding a small amount of human-imperceptible perturbations; Second Row [19]: By just changing one pixel in a ‘‘Green-Light’’ image, a state-of-the-art DNN
misclassifies it as ‘‘Red-Light’’; Bottom Row [20]: In a sentiment analysis task for medical records, with two misspelt words, a well-trained deep learning model
classifies a ‘‘Positive’’ medical record as ‘‘Negative’’.

Example 4. As shown in the second row of Fig. 4, in classification
tasks, by adding a small amount of adversarial perturbation (w.r.t.
Lp-norm distance), the DNNs will misclassify an image of traffic
sign ‘‘red light’’ into ‘‘green light’’ [19,21]. In this case, the human
decision oracle H is approximated by stating that two inputs
within a very small Lp-norm distance are the same.

Example 5. In a DL-enabled end-to-end controller deployed in
autonomous vehicles, by adding some natural transformations
such as ‘‘rain’’, the controller will output an erroneous decision,
‘‘turning left’’, instead of a righteous decision, ‘‘turning right’’ [22].
However, it is clear that, from the human driver’s point of view,
adding ‘‘rain’’ should not change the driving decision of a car.

Example 6. As shown in the bottom row of Fig. 4, for medical
record, some minor misspellings – which happen very often in
the medical records – will lead to significant mis-classification on
the diagnosis result, from ‘‘Positive’’ to ‘‘Negative’’.

As we can see, these unsafe, or erroneous, phenomenon act-
ing on DNNs are essentially caused by the inconsistency of the
decision boundaries from DL models (that are learned from train-
ing datasets) and human oracles. This inevitably raises signifi-
cant concerns on whether DL models can be safely applied in
safety-critical domains.

In the following, we review a few safety properties that have
been studied in the literature.

3.2. Local robustness property

Robustness requires that the decision of a DNN is invariant
against small perturbations. The following definition is adapted
from that of Huang et al. [23].

Definition 8 (Local Robustness). Given a DNN N with its asso-
ciated function f , and an input region ⌘ ✓ [0, 1]s1 , the (un-
targeted) local robustness of f on ⌘ is defined as

Robust(f , ⌘) , 8x 2 ⌘, 9 l 2 [1..sK], 8j 2 [1..sK] : fl(x) � fj(x) (9)

For targeted local robustness of a label j, it is defined as

Robustj(f , ⌘) , 8x 2 ⌘, 9 l 2 [1..sK] : fl(x) > fj(x) (10)

Intuitively, local robustness states that all inputs in the region
⌘ have the same class label. More specifically, there exists a label
l such that, for all inputs x in region ⌘, and other labels j, the DNN
believes that x is more possible to be in class l than in any class
j. Moreover, targeted local robustness means that a specific label
j cannot be perturbed for all inputs in ⌘; specifically, all inputs x
in ⌘ have a class l 6= j, which the DNN believes is more possible
than the class j. Usually, the region ⌘ is defined with respect to
an input x and a norm Lp, as in Definition 5. If so, it means that
all inputs in ⌘ have the same class as input x. For targeted local
robustness, it is required that none of the inputs in the region ⌘
is classified as a given label j.

In the following, we define a test oracle for the local robust-
ness property. Note that, all existing testing approaches surveyed
relate to local robustness, and therefore we only provide the test
oracle for local robustness.

Definition 9 (Test Oracle of Local Robustness Property). Let D be
a set of correctly-labelled inputs. Given a norm distance Lp and a
real number d, a test case (x1, . . . , xk) 2 T passes the test oracle’s
local robustness property, or oracle for simplicity, if

81  i  k9 x0 2 D : xi 2 ⌘(x0, Lp, d) (11)

Well-trained, e.g., 97% accuracy, DNNs are fine for most tasks

But not enough for mission-critical tasks, e.g., self-driving cars, air traffic
collision control

Testing can find counterexamples (e.g., adversarial attacks)

Testing shows the existence of errors, not its absence (Dijkstra)

Formal Verification Can Help!

12

8 X. Huang, D. Kroening, W. Ruan et al. / Computer Science Review 37 (2020) 100270

Fig. 4. Examples of erroneous behaviour on deep learning models. Top Row [18]: In a medical diagnosis system, a ‘‘Benign’’ tumour is misclassified as ‘‘Malignant’’
after adding a small amount of human-imperceptible perturbations; Second Row [19]: By just changing one pixel in a ‘‘Green-Light’’ image, a state-of-the-art DNN
misclassifies it as ‘‘Red-Light’’; Bottom Row [20]: In a sentiment analysis task for medical records, with two misspelt words, a well-trained deep learning model
classifies a ‘‘Positive’’ medical record as ‘‘Negative’’.

Example 4. As shown in the second row of Fig. 4, in classification
tasks, by adding a small amount of adversarial perturbation (w.r.t.
Lp-norm distance), the DNNs will misclassify an image of traffic
sign ‘‘red light’’ into ‘‘green light’’ [19,21]. In this case, the human
decision oracle H is approximated by stating that two inputs
within a very small Lp-norm distance are the same.

Example 5. In a DL-enabled end-to-end controller deployed in
autonomous vehicles, by adding some natural transformations
such as ‘‘rain’’, the controller will output an erroneous decision,
‘‘turning left’’, instead of a righteous decision, ‘‘turning right’’ [22].
However, it is clear that, from the human driver’s point of view,
adding ‘‘rain’’ should not change the driving decision of a car.

Example 6. As shown in the bottom row of Fig. 4, for medical
record, some minor misspellings – which happen very often in
the medical records – will lead to significant mis-classification on
the diagnosis result, from ‘‘Positive’’ to ‘‘Negative’’.

As we can see, these unsafe, or erroneous, phenomenon act-
ing on DNNs are essentially caused by the inconsistency of the
decision boundaries from DL models (that are learned from train-
ing datasets) and human oracles. This inevitably raises signifi-
cant concerns on whether DL models can be safely applied in
safety-critical domains.

In the following, we review a few safety properties that have
been studied in the literature.

3.2. Local robustness property

Robustness requires that the decision of a DNN is invariant
against small perturbations. The following definition is adapted
from that of Huang et al. [23].

Definition 8 (Local Robustness). Given a DNN N with its asso-
ciated function f , and an input region ⌘ ✓ [0, 1]s1 , the (un-
targeted) local robustness of f on ⌘ is defined as

Robust(f , ⌘) , 8x 2 ⌘, 9 l 2 [1..sK], 8j 2 [1..sK] : fl(x) � fj(x) (9)

For targeted local robustness of a label j, it is defined as

Robustj(f , ⌘) , 8x 2 ⌘, 9 l 2 [1..sK] : fl(x) > fj(x) (10)

Intuitively, local robustness states that all inputs in the region
⌘ have the same class label. More specifically, there exists a label
l such that, for all inputs x in region ⌘, and other labels j, the DNN
believes that x is more possible to be in class l than in any class
j. Moreover, targeted local robustness means that a specific label
j cannot be perturbed for all inputs in ⌘; specifically, all inputs x
in ⌘ have a class l 6= j, which the DNN believes is more possible
than the class j. Usually, the region ⌘ is defined with respect to
an input x and a norm Lp, as in Definition 5. If so, it means that
all inputs in ⌘ have the same class as input x. For targeted local
robustness, it is required that none of the inputs in the region ⌘
is classified as a given label j.

In the following, we define a test oracle for the local robust-
ness property. Note that, all existing testing approaches surveyed
relate to local robustness, and therefore we only provide the test
oracle for local robustness.

Definition 9 (Test Oracle of Local Robustness Property). Let D be
a set of correctly-labelled inputs. Given a norm distance Lp and a
real number d, a test case (x1, . . . , xk) 2 T passes the test oracle’s
local robustness property, or oracle for simplicity, if

81  i  k9 x0 2 D : xi 2 ⌘(x0, Lp, d) (11)

Well-trained, e.g., 97% accuracy, DNNs are fine for most tasks

But not enough for mission-critical tasks, e.g., self-driving cars, air traffic
collision control

Testing can find counterexamples (e.g., adversarial attacks)

Testing shows the existence of errors, not its absence (Dijkstra)

Formal Verification Can Help!

12

Software Verification

Provide formal guarantee that a system really has no specific type of errors

Mature field in CS/Logics with lots of powerful techniques and tools

Automated Theorem Proving
Constraint Solving (e.g., SAT/SMT solving)
Model Checking
Abstract Interpretation, ...

Employed in mission-critical systems, e.g., avionics, medical devices,
Windows, Clouds system (AWS)

13

The problem of Deep Neural Network verification
Question: Given a network N and a property p, does N have p?

p often has the form P ⇒ Q (precondition P, postcondition Q)

Answer: Yes / No

Simple DNN with ReLU

x1 x3

x2 x4

x5
-0.5

-1.0

1.0

1.0

-1.0-0.5

-1.0

1.0

E.g., x3 = max(−1x1 +−0.5x2, 0)

Valid: x1 ∈ [−1, 1] ∧ x2 ∈ [−2, 2] ⇒ x5 ≤ 0

Invalid: x1 ∈ [−1, 1] ∧ x2 ∈ [−2, 2] ⇒ x5 > 0

14

The problem of Deep Neural Network verification
Question: Given a network N and a property p, does N have p?

p often has the form P ⇒ Q (precondition P, postcondition Q)

Answer: Yes / No

Simple DNN with ReLU

x1 x3

x2 x4

x5
-0.5

-1.0

1.0

1.0

-1.0-0.5

-1.0

1.0

E.g., x3 = max(−1x1 +−0.5x2, 0)

Valid: x1 ∈ [−1, 1] ∧ x2 ∈ [−2, 2] ⇒ x5 ≤ 0

Invalid: x1 ∈ [−1, 1] ∧ x2 ∈ [−2, 2] ⇒ x5 > 0

14

The problem of Deep Neural Network verification
Question: Given a network N and a property p, does N have p?

p often has the form P ⇒ Q (precondition P, postcondition Q)

Answer: Yes / No

Simple DNN with ReLU

x1 x3

x2 x4

x5
-0.5

-1.0

1.0

1.0

-1.0-0.5

-1.0

1.0

E.g., x3 = max(−1x1 +−0.5x2, 0)

Valid: x1 ∈ [−1, 1] ∧ x2 ∈ [−2, 2] ⇒ x5 ≤ 0

Invalid: x1 ∈ [−1, 1] ∧ x2 ∈ [−2, 2] ⇒ x5 > 0

14

Constraint Solving TechniquesNetAI’19, August 23, 2019, Beijing, China Kazak et al.

developments in the formal veri�cation of DNNs [13], a topic which
has received considerable attention of late [7, 8, 11, 13, 15, 34].

Verily can be used to establish that speci�ed requirements from
a deep-RL-driven system are satis�ed. This is important, e.g., for
determining at what point a deep-RL-based system is “su�ciently
trained” (similar to acceptance tests for traditional software), and
for ensuring that a system achieves desired service-level objectives.
Importantly, when Verily determines that the system does not sat-
isfy a certain requirement, it provides a concrete scenario (a counter
example) to demonstrate this. These counter examples can be used
to guide changes to the DNN architecture and/or to identify cir-
cumstances in which the deep-RL-generated decisions should be
overridden.

We evaluate Verily on three deep-RL-driven systems: the Pen-
sieve adaptive video streaming scheme [24], the DeepRM scheduler
for cloud resource management [23], and the Custard Internet con-
gestion controller [12]. We formulate natural requirements for each
of these systems and apply Verily to determine whether these are
always satis�ed and, if not, generate counter examples. Our pre-
liminary evaluation results expose several problems in the tested
systems, and suggest that the formal veri�cation approach (and,
more concretely, the Verily tool) can play an important role in the
design and deployment of safer deep-RL-based systems.

2 BACKGROUND
2.1 Deep-RL-Driven Systems
In RL [31], an agent observes, at each discrete time step t 2 0, 1, ...,
a state of its environment st and selects an action at . After selecting
its action, the agent observes a reward rt , representing its loss/gain
from selectingat . The agent’s goal is to choose a policy � , i.e., a map-
ping of states to actions, which maximizes the expected cumulative
discounted return Rt = E

⇥ Õ
t �

t · rt
⇤
, for � 2 ⇥

0, 1
�
. The parameter

� is termed the discount factor. Recent advances in deep RL employ
deep neural networks to approximate the optimal � [26, 29].

RL provides a useful abstraction for sequential decision mak-
ing and, in particular, is applicable also when (i) the agent may
only possess partial information about the current state; and (ii)
the implications of choosing an action may become clear only in
hindsight (“delayed rewards”).

To illustrate the promise of utilizing deep RL for system de-
sign, we brie�y discuss its recent application to HTTP-based video
streaming [24]. To optimize user quality of experience (QoE), video
clients employ adaptive bitrate (ABR) protocols to dynamically
select the bitrates (resolutions) of requested video chunks (say, 4-
second video segments). ABR protocols map local observables such
as the occupancy of the client’s playback bu�er and the download
times of prior video chunks, to choices of bitrates for upcoming
video chunks. Today’s protocols typically rely on “handwired” map-
pings from local observables to selected bitrates, devised by human
experts. In contrast, the deep-RL-driven Pensieve [24] ABR protocol
automatically learns high-performance bitrate selection policies
from empirical data. Pensieve does so by testing the implications of
di�erent bitrate selections for performance, as captured by a reward
function that re�ects QoE goals such as sending at high bitrates
and avoiding client video rebu�ering and jitter in bitrates. A DNN
is employed to map observables to bitrate selections, thus enabling

Figure 1: The neural network veri�cation scheme.

Pensieve to e�ciently learn complex ABR policies. Experimental
and empirical evaluations suggest that Pensieve outperforms the
widely used handcrafted algorithms, even in environments with
di�erent characteristics than those of its training environment.

2.2 Deep Neural Network Veri�cation
Following the rise in popularity of DNNs, the veri�cation commu-
nity has begun addressing the need to verify neural networks [3, 7,
8, 11, 13–15, 18, 18, 34]. Because neural networks are constructed
from a small set of relatively simple arithmetical operations, the
DNN veri�cation problem is decidable (which is often not the case
for veri�cation of manually crafted code). However, although decid-
able, DNN veri�cation is computationally complex (NP-complete)
even in simple cases [13], and scalability is a major hindrance for
veri�cation tools. Despite this, veri�cation technology is rapidly
improving and, as demonstrated by us and by others, existing tools
are already su�cient for tacking real-world problems of interest.

A DNN veri�cation query is comprised of the following: (i) a
neural network N ; (ii) an input property P ; and (iii) an output prop-
erty Q . A veri�cation engine then tries to answer the question “does
there exist an input vector x , such that P(x) holds and Q(N (x)) also
holds?”, where N (x) is the output vector that the neural network
produces for input x . In other words, the veri�cation engine seeks a
particular input x that satis�es the input property P , and is mapped
by the neural network to an output that satis�es the output prop-
erty Q . The veri�cation process has two possible outcomes: (1) an
unsat result, indicating that no such input exists; and (2) a sat result,
accompanied by a concrete input x0 such that P(x0) and Q(N (x0))
hold. See Fig. 1 for an illustration.Q typically expresses the negation
of the desired property, and thus an unsat result indicates that the
property holds, whereas sat indicates a violation that occurs for x0.

An important distinction between veri�cation and other com-
mon approaches for quality assurance, such as testing and simula-
tion, is that a single veri�cation query can provide formal guaran-
tees about the behavior of the system for in�nitely many inputs.
This can help to ensure, e.g., that a DNN operates correctly when
presented with inputs that were not part of its training or validation
sets. In some cases, veri�cation queries can even be used to explain
how certain decisions are reached by the DNN [4].

84

Transform DNN verification into a constraint (satisfiability) problem

UNSAT: p is a property of N
SAT: p is not a property of N (also provide counterexamples)
TIMEOUT

Solve the constraint, e.g., using MILP solvers

Scalability is a Huge problem (many TIMEOUTs)

Complexity O(2N), where N is the number of neurons

15

Constraint Solving TechniquesNetAI’19, August 23, 2019, Beijing, China Kazak et al.

developments in the formal veri�cation of DNNs [13], a topic which
has received considerable attention of late [7, 8, 11, 13, 15, 34].

Verily can be used to establish that speci�ed requirements from
a deep-RL-driven system are satis�ed. This is important, e.g., for
determining at what point a deep-RL-based system is “su�ciently
trained” (similar to acceptance tests for traditional software), and
for ensuring that a system achieves desired service-level objectives.
Importantly, when Verily determines that the system does not sat-
isfy a certain requirement, it provides a concrete scenario (a counter
example) to demonstrate this. These counter examples can be used
to guide changes to the DNN architecture and/or to identify cir-
cumstances in which the deep-RL-generated decisions should be
overridden.

We evaluate Verily on three deep-RL-driven systems: the Pen-
sieve adaptive video streaming scheme [24], the DeepRM scheduler
for cloud resource management [23], and the Custard Internet con-
gestion controller [12]. We formulate natural requirements for each
of these systems and apply Verily to determine whether these are
always satis�ed and, if not, generate counter examples. Our pre-
liminary evaluation results expose several problems in the tested
systems, and suggest that the formal veri�cation approach (and,
more concretely, the Verily tool) can play an important role in the
design and deployment of safer deep-RL-based systems.

2 BACKGROUND
2.1 Deep-RL-Driven Systems
In RL [31], an agent observes, at each discrete time step t 2 0, 1, ...,
a state of its environment st and selects an action at . After selecting
its action, the agent observes a reward rt , representing its loss/gain
from selectingat . The agent’s goal is to choose a policy � , i.e., a map-
ping of states to actions, which maximizes the expected cumulative
discounted return Rt = E

⇥ Õ
t �

t · rt
⇤
, for � 2 ⇥

0, 1
�
. The parameter

� is termed the discount factor. Recent advances in deep RL employ
deep neural networks to approximate the optimal � [26, 29].

RL provides a useful abstraction for sequential decision mak-
ing and, in particular, is applicable also when (i) the agent may
only possess partial information about the current state; and (ii)
the implications of choosing an action may become clear only in
hindsight (“delayed rewards”).

To illustrate the promise of utilizing deep RL for system de-
sign, we brie�y discuss its recent application to HTTP-based video
streaming [24]. To optimize user quality of experience (QoE), video
clients employ adaptive bitrate (ABR) protocols to dynamically
select the bitrates (resolutions) of requested video chunks (say, 4-
second video segments). ABR protocols map local observables such
as the occupancy of the client’s playback bu�er and the download
times of prior video chunks, to choices of bitrates for upcoming
video chunks. Today’s protocols typically rely on “handwired” map-
pings from local observables to selected bitrates, devised by human
experts. In contrast, the deep-RL-driven Pensieve [24] ABR protocol
automatically learns high-performance bitrate selection policies
from empirical data. Pensieve does so by testing the implications of
di�erent bitrate selections for performance, as captured by a reward
function that re�ects QoE goals such as sending at high bitrates
and avoiding client video rebu�ering and jitter in bitrates. A DNN
is employed to map observables to bitrate selections, thus enabling

Figure 1: The neural network veri�cation scheme.

Pensieve to e�ciently learn complex ABR policies. Experimental
and empirical evaluations suggest that Pensieve outperforms the
widely used handcrafted algorithms, even in environments with
di�erent characteristics than those of its training environment.

2.2 Deep Neural Network Veri�cation
Following the rise in popularity of DNNs, the veri�cation commu-
nity has begun addressing the need to verify neural networks [3, 7,
8, 11, 13–15, 18, 18, 34]. Because neural networks are constructed
from a small set of relatively simple arithmetical operations, the
DNN veri�cation problem is decidable (which is often not the case
for veri�cation of manually crafted code). However, although decid-
able, DNN veri�cation is computationally complex (NP-complete)
even in simple cases [13], and scalability is a major hindrance for
veri�cation tools. Despite this, veri�cation technology is rapidly
improving and, as demonstrated by us and by others, existing tools
are already su�cient for tacking real-world problems of interest.

A DNN veri�cation query is comprised of the following: (i) a
neural network N ; (ii) an input property P ; and (iii) an output prop-
erty Q . A veri�cation engine then tries to answer the question “does
there exist an input vector x , such that P(x) holds and Q(N (x)) also
holds?”, where N (x) is the output vector that the neural network
produces for input x . In other words, the veri�cation engine seeks a
particular input x that satis�es the input property P , and is mapped
by the neural network to an output that satis�es the output prop-
erty Q . The veri�cation process has two possible outcomes: (1) an
unsat result, indicating that no such input exists; and (2) a sat result,
accompanied by a concrete input x0 such that P(x0) and Q(N (x0))
hold. See Fig. 1 for an illustration.Q typically expresses the negation
of the desired property, and thus an unsat result indicates that the
property holds, whereas sat indicates a violation that occurs for x0.

An important distinction between veri�cation and other com-
mon approaches for quality assurance, such as testing and simula-
tion, is that a single veri�cation query can provide formal guaran-
tees about the behavior of the system for in�nitely many inputs.
This can help to ensure, e.g., that a DNN operates correctly when
presented with inputs that were not part of its training or validation
sets. In some cases, veri�cation queries can even be used to explain
how certain decisions are reached by the DNN [4].

84

Transform DNN verification into a constraint (satisfiability) problem

UNSAT: p is a property of N
SAT: p is not a property of N (also provide counterexamples)
TIMEOUT

Solve the constraint, e.g., using MILP solvers

Scalability is a Huge problem (many TIMEOUTs)

Complexity O(2N), where N is the number of neurons

15

Constraint Solving TechniquesNetAI’19, August 23, 2019, Beijing, China Kazak et al.

developments in the formal veri�cation of DNNs [13], a topic which
has received considerable attention of late [7, 8, 11, 13, 15, 34].

Verily can be used to establish that speci�ed requirements from
a deep-RL-driven system are satis�ed. This is important, e.g., for
determining at what point a deep-RL-based system is “su�ciently
trained” (similar to acceptance tests for traditional software), and
for ensuring that a system achieves desired service-level objectives.
Importantly, when Verily determines that the system does not sat-
isfy a certain requirement, it provides a concrete scenario (a counter
example) to demonstrate this. These counter examples can be used
to guide changes to the DNN architecture and/or to identify cir-
cumstances in which the deep-RL-generated decisions should be
overridden.

We evaluate Verily on three deep-RL-driven systems: the Pen-
sieve adaptive video streaming scheme [24], the DeepRM scheduler
for cloud resource management [23], and the Custard Internet con-
gestion controller [12]. We formulate natural requirements for each
of these systems and apply Verily to determine whether these are
always satis�ed and, if not, generate counter examples. Our pre-
liminary evaluation results expose several problems in the tested
systems, and suggest that the formal veri�cation approach (and,
more concretely, the Verily tool) can play an important role in the
design and deployment of safer deep-RL-based systems.

2 BACKGROUND
2.1 Deep-RL-Driven Systems
In RL [31], an agent observes, at each discrete time step t 2 0, 1, ...,
a state of its environment st and selects an action at . After selecting
its action, the agent observes a reward rt , representing its loss/gain
from selectingat . The agent’s goal is to choose a policy � , i.e., a map-
ping of states to actions, which maximizes the expected cumulative
discounted return Rt = E

⇥ Õ
t �

t · rt
⇤
, for � 2 ⇥

0, 1
�
. The parameter

� is termed the discount factor. Recent advances in deep RL employ
deep neural networks to approximate the optimal � [26, 29].

RL provides a useful abstraction for sequential decision mak-
ing and, in particular, is applicable also when (i) the agent may
only possess partial information about the current state; and (ii)
the implications of choosing an action may become clear only in
hindsight (“delayed rewards”).

To illustrate the promise of utilizing deep RL for system de-
sign, we brie�y discuss its recent application to HTTP-based video
streaming [24]. To optimize user quality of experience (QoE), video
clients employ adaptive bitrate (ABR) protocols to dynamically
select the bitrates (resolutions) of requested video chunks (say, 4-
second video segments). ABR protocols map local observables such
as the occupancy of the client’s playback bu�er and the download
times of prior video chunks, to choices of bitrates for upcoming
video chunks. Today’s protocols typically rely on “handwired” map-
pings from local observables to selected bitrates, devised by human
experts. In contrast, the deep-RL-driven Pensieve [24] ABR protocol
automatically learns high-performance bitrate selection policies
from empirical data. Pensieve does so by testing the implications of
di�erent bitrate selections for performance, as captured by a reward
function that re�ects QoE goals such as sending at high bitrates
and avoiding client video rebu�ering and jitter in bitrates. A DNN
is employed to map observables to bitrate selections, thus enabling

Figure 1: The neural network veri�cation scheme.

Pensieve to e�ciently learn complex ABR policies. Experimental
and empirical evaluations suggest that Pensieve outperforms the
widely used handcrafted algorithms, even in environments with
di�erent characteristics than those of its training environment.

2.2 Deep Neural Network Veri�cation
Following the rise in popularity of DNNs, the veri�cation commu-
nity has begun addressing the need to verify neural networks [3, 7,
8, 11, 13–15, 18, 18, 34]. Because neural networks are constructed
from a small set of relatively simple arithmetical operations, the
DNN veri�cation problem is decidable (which is often not the case
for veri�cation of manually crafted code). However, although decid-
able, DNN veri�cation is computationally complex (NP-complete)
even in simple cases [13], and scalability is a major hindrance for
veri�cation tools. Despite this, veri�cation technology is rapidly
improving and, as demonstrated by us and by others, existing tools
are already su�cient for tacking real-world problems of interest.

A DNN veri�cation query is comprised of the following: (i) a
neural network N ; (ii) an input property P ; and (iii) an output prop-
erty Q . A veri�cation engine then tries to answer the question “does
there exist an input vector x , such that P(x) holds and Q(N (x)) also
holds?”, where N (x) is the output vector that the neural network
produces for input x . In other words, the veri�cation engine seeks a
particular input x that satis�es the input property P , and is mapped
by the neural network to an output that satis�es the output prop-
erty Q . The veri�cation process has two possible outcomes: (1) an
unsat result, indicating that no such input exists; and (2) a sat result,
accompanied by a concrete input x0 such that P(x0) and Q(N (x0))
hold. See Fig. 1 for an illustration.Q typically expresses the negation
of the desired property, and thus an unsat result indicates that the
property holds, whereas sat indicates a violation that occurs for x0.

An important distinction between veri�cation and other com-
mon approaches for quality assurance, such as testing and simula-
tion, is that a single veri�cation query can provide formal guaran-
tees about the behavior of the system for in�nitely many inputs.
This can help to ensure, e.g., that a DNN operates correctly when
presented with inputs that were not part of its training or validation
sets. In some cases, veri�cation queries can even be used to explain
how certain decisions are reached by the DNN [4].

84

Transform DNN verification into a constraint (satisfiability) problem

UNSAT: p is a property of N
SAT: p is not a property of N (also provide counterexamples)
TIMEOUT

Solve the constraint, e.g., using MILP solvers

Scalability is a Huge problem (many TIMEOUTs)

Complexity O(2N), where N is the number of neurons

15

Abstraction Techniques

Overapproximate computation (e.g., ReLU) using abstract domains

interval, zonotopes, polytopes

Zonotope

Polytope

Interval

Scale well, but loose precision (producing spurious cex’s)

Claiming a property is violated when it is not

16

Abstraction Techniques

Overapproximate computation (e.g., ReLU) using abstract domains

interval, zonotopes, polytopes

Zonotope

Polytope

Interval

Scale well, but loose precision (producing spurious cex’s)

Claiming a property is violated when it is not

16

NeuralSAT: Our DNN Constraint Solver

To prove N ⇒ (P ⇒ Q)

Call NeuralSAT(N ∧ P ∧ ¬Q)

Return UNSAT or SAT (and counterexample)

Analyze-
ConflictDecide

BCP Backtrack

DNN +
Property

Boolean
Abstraction

SAT UNSATDEDUCTION

1 Abstract as a boolean satisfiability problem

2 Iteratively search for satisfying assignment

Use heuristics to make decision
Use propagation to communicate learn
information
Analyze conflicts, learn conflict
information, and backtrack
Use a theory solver to quickly deduce
unsatisfiability (UNSAT)

17

Example: Simple DNN with ReLU activation

x1 x3

x2 x4

x5
-0.5

-1.0

1.0

1.0

-1.0-0.5

-1.0

1.0

To prove f : x1 ∈ [−1, 1] ∧ x2 ∈ [−2, 2] ⇒ x5 ≤ 0:

Use NeuralSAT to check if ¬f is satisfiable

NeuralSAT(N ∧ x1 ∈ [−1, 1] ∧ x2 ∈ [−2, 2] ∧ x5 > 0)

NeuralSAT returns UNSAT, indicating f is valid

18

Analyze-
ConflictDecide

BCP Backtrack

DNN +
Property

Boolean
Abstraction

SAT UNSATDEDUCTION

x1 x3

x2 x4

x5
-0.5

-1.0

1.0

1.0

-1.0-0.5

-1.0

1.0

x1 ∈ [−1, 1], x2 ∈ [−2, 2], x5 > 0

Boolean Abstraction
Create 2 boolean variables v3 and v4 to
represent activation status of x3, x4

v3 = T means x3 is active,
−x1 − 0.5x2 − 1 > 0

Form two clauses {v3 ∨ v3 ; v4 ∨ v4}

Find boolean values for v3, v4 that satisfies
the clauses and their implications

19

Analyze-
ConflictDecide

BCP Backtrack

DNN +
Property

Boolean
Abstraction

SAT UNSATDEDUCTION

x1 x3

x2 x4

x5
-0.5

-1.0

1.0

1.0

-1.0-0.5

-1.0

1.0

x1 ∈ [−1, 1], x2 ∈ [−2, 2], x5 > 0

Boolean Abstraction
Create 2 boolean variables v3 and v4 to
represent activation status of x3, x4

v3 = T means x3 is active,
−x1 − 0.5x2 − 1 > 0

Form two clauses {v3 ∨ v3 ; v4 ∨ v4}

Find boolean values for v3, v4 that satisfies
the clauses and their implications

19

Analyze-
ConflictDecide

BCP Backtrack

DNN +
Property

Boolean
Abstraction

SAT UNSATDEDUCTION

x1 x3

x2 x4

x5
-0.5

-1.0

1.0

1.0

-1.0-0.5

-1.0

1.0

x1 ∈ [−1, 1], x2 ∈ [−2, 2], x5 > 0

Iteration 1
Use abstraction to approximate
upperbound x5 ≤ 0.55 (from
x1 ∈ [−1, 1], x2 ∈ [−2, 2])

Deduce x5 > 0 might be feasible

Decide v3 = F (randomly)

new constraint −x1 − 0.5x2 − 1 < 0

20

Analyze-
ConflictDecide

BCP Backtrack

DNN +
Property

Boolean
Abstraction

SAT UNSATDEDUCTION

x1 x3

x2 x4

x5
-0.5

-1.0

1.0

1.0

-1.0-0.5

-1.0

1.0

x1 ∈ [−1, 1], x2 ∈ [−2, 2], x5 > 0

Iteration 1
Use abstraction to approximate
upperbound x5 ≤ 0.55 (from
x1 ∈ [−1, 1], x2 ∈ [−2, 2])

Deduce x5 > 0 might be feasible

Decide v3 = F (randomly)

new constraint −x1 − 0.5x2 − 1 < 0

20

Analyze-
ConflictDecide

BCP Backtrack

DNN +
Property

Boolean
Abstraction

SAT UNSATDEDUCTION

x1 x3

x2 x4

x5
-0.5

-1.0

1.0

1.0

-1.0-0.5

-1.0

1.0

x1 ∈ [−1, 1], x2 ∈ [−2, 2], x5 > 0

Iteration 1
Use abstraction to approximate
upperbound x5 ≤ 0.55 (from
x1 ∈ [−1, 1], x2 ∈ [−2, 2])

Deduce x5 > 0 might be feasible

Decide v3 = F (randomly)

new constraint −x1 − 0.5x2 − 1 < 0

20

Analyze-
ConflictDecide

BCP Backtrack

DNN +
Property

Boolean
Abstraction

SAT UNSATDEDUCTION

x1 x3

x2 x4

x5
-0.5

-1.0

1.0

1.0

-1.0-0.5

-1.0

1.0

x1 ∈ [−1, 1], x2 ∈ [−2, 2], x5 > 0

Iteration 2
Approximate upperbound x5 ≤ 0 (due to
additional constraint from v3 = F)

Deduce x5 > 0 infeasible: CONFLICT

Analyze conflict, backtrack and erase
prev. decision v3 = F

Learn new clause v3

v3 will have to be T in next iteration

21

Analyze-
ConflictDecide

BCP Backtrack

DNN +
Property

Boolean
Abstraction

SAT UNSATDEDUCTION

x1 x3

x2 x4

x5
-0.5

-1.0

1.0

1.0

-1.0-0.5

-1.0

1.0

x1 ∈ [−1, 1], x2 ∈ [−2, 2], x5 > 0

Iteration 2
Approximate upperbound x5 ≤ 0 (due to
additional constraint from v3 = F)

Deduce x5 > 0 infeasible: CONFLICT

Analyze conflict, backtrack and erase
prev. decision v3 = F

Learn new clause v3

v3 will have to be T in next iteration

21

Analyze-
ConflictDecide

BCP Backtrack

DNN +
Property

Boolean
Abstraction

SAT UNSATDEDUCTION

x1 x3

x2 x4

x5
-0.5

-1.0

1.0

1.0

-1.0-0.5

-1.0

1.0

x1 ∈ [−1, 1], x2 ∈ [−2, 2], x5 > 0

Iteration 3
Decide v3 = T (BCP, due to learned
clause v3)

new constraint −x1 − 0.5x2 − 1 > 0

Approximate new upperbound for x5
(using additional constraint from v3 = T)

Deduce x5 > 0 might be feasible

Decide v4 = T (randomly)

...

22

Analyze-
ConflictDecide

BCP Backtrack

DNN +
Property

Boolean
Abstraction

SAT UNSATDEDUCTION

x1 x3

x2 x4

x5
-0.5

-1.0

1.0

1.0

-1.0-0.5

-1.0

1.0

x1 ∈ [−1, 1], x2 ∈ [−2, 2], x5 > 0

Iteration 3
Decide v3 = T (BCP, due to learned
clause v3)

new constraint −x1 − 0.5x2 − 1 > 0

Approximate new upperbound for x5
(using additional constraint from v3 = T)

Deduce x5 > 0 might be feasible

Decide v4 = T (randomly)

...

22

Analyze-
ConflictDecide

BCP Backtrack

DNN +
Property

Boolean
Abstraction

SAT UNSATDEDUCTION

x1 x3

x2 x4

x5
-0.5

-1.0

1.0

1.0

-1.0-0.5

-1.0

1.0

x1 ∈ [−1, 1], x2 ∈ [−2, 2], x5 > 0

After several iterations
Learn clauses {v3, v3 ∨ v4, v3 ∨ v4}

Deduce not possible to satisfy the clauses

Return UNSAT

Cannot find inputs satisfying
x1 ∈ [−1, 1], x2 ∈ [−2, 2] that cause N to
return x5 > 0
Hence, x5 ≤ 0 holds (i.e., the original
property is valid)

23

Analyze-
ConflictDecide

BCP Backtrack

DNN +
Property

Boolean
Abstraction

SAT UNSATDEDUCTION

x1 x3

x2 x4

x5
-0.5

-1.0

1.0

1.0

-1.0-0.5

-1.0

1.0

x1 ∈ [−1, 1], x2 ∈ [−2, 2], x5 > 0

After several iterations
Learn clauses {v3, v3 ∨ v4, v3 ∨ v4}

Deduce not possible to satisfy the clauses

Return UNSAT

Cannot find inputs satisfying
x1 ∈ [−1, 1], x2 ∈ [−2, 2] that cause N to
return x5 > 0
Hence, x5 ≤ 0 holds (i.e., the original
property is valid)

23

Benchmark Rank Verifier Score Percent Verify Falsify

ACAS Xu (13K)

1 NeuralSAT 1437 100.0% 139 47
1 nnenum 1437 100.0% 139 47
3 αβ-CROWN 1436 99.9% 139 46
4 Marabou 1426 99.2% 138 46
5 MN-BaB 1097 76.3% 105 47

MNISTFC (532K)

1 αβ-CROWN 582 100.0% 56 22
2 NeuralSAT 573 98.5% 55 23
3 nnenum 403 69.2% 39 13
4 MN-BaB 370 63.6% 36 10
4 Marabou 370 63.6% 35 20

CIFAR2020 (2.5M)

1 NeuralSAT 1533 100.0% 149 43
2 αβ-CROWN 1522 99.3% 148 42
3 MN-BaB 1486 96.9% 145 36
5 nnenum 518 33.8% 50 18

RESNET_AB (354K)

1 NeuralSAT 513 100.0% 23 23
1 αβ-CROWN 513 100.0% 49 23
3 MN-BaB 363 70.8% 34 23

MNIST_GDVB (3M)

1 NeuralSAT 480 100.0% 48 0
2 αβ-CROWN 400 83.3% 40 0
3 MN-BaB 200 41.7% 20 0

Overall

1 NeuralSAT 4536 100.0% 440 136
2 αβ-CROWN 4453 98.2% 432 133
3 MN-BaB 3516 77.5% 340 116
4 nnenum 2358 52.0% 228 78
5 Marabou 1796 39.6% 173 66

Key Ideas
Formalization of DNN verification

Analyze, learn, and propagate information (significantly reduce search space)

Dedicated DNN-specific theory solver (enable fast proving)

New approach; open doors to new research on heuristics, optimizations
specific to DNNs

Usability Features
Standard: inputs (ONNX) and outputs (SAT/UNSAT/TIMEOUT)

Versatile

Support Feedforward, Convolutional, Residual Networks
Support ReLU, Sigmoid, Tanh, Power, etc

Scale well to large networks with millions of neurons

Active development & frequent Updates

Fully automatic (require little configurations from users)

25

Key Ideas
Formalization of DNN verification

Analyze, learn, and propagate information (significantly reduce search space)

Dedicated DNN-specific theory solver (enable fast proving)

New approach; open doors to new research on heuristics, optimizations
specific to DNNs

Usability Features
Standard: inputs (ONNX) and outputs (SAT/UNSAT/TIMEOUT)

Versatile

Support Feedforward, Convolutional, Residual Networks
Support ReLU, Sigmoid, Tanh, Power, etc

Scale well to large networks with millions of neurons

Active development & frequent Updates

Fully automatic (require little configurations from users)

25

Outline

AI Safety Verification
Highly Configurable and Build Systems
Invariant Generation and Program Repair

26

Linux/Unix Build Systems Modern software are
highly-configurable

Allow for customization and
flexibility
Can have misconfigurations (5th

on OWASP most critical security
risks)

Challenge: huge search space
(213000 for Linux)

Approach: use symbolic execution
to compute path conditions
mapping to built files

of files is very small
Solve path conds to find build
issues and misconfigurations

27

Linux/Unix Build Systems Modern software are
highly-configurable

Allow for customization and
flexibility
Can have misconfigurations (5th

on OWASP most critical security
risks)

Challenge: huge search space
(213000 for Linux)

Approach: use symbolic execution
to compute path conditions
mapping to built files

of files is very small
Solve path conds to find build
issues and misconfigurations

27

Outline

AI Safety Verification
Highly Configurable and Build Systems
Invariant Generation and Program Repair

28

Invariant Generation (DIG)

def intdiv(x, y):
q = 0
r = x
while r ≥ y:
a = 1
b = y
while [??] r ≥ 2b:

a = 2a
b = 2b

r = r - b
q = q + a
[??]
return q

Discover invariant properties
at certain program locations

Answer the question “what
does this program do ?”

Approach: use template and
dynamic analysis

Program Repair (GenProg)

def intdiv(x, y):
q = 0
r = x

while r ��7
̸=

≥ y:
a = 1

b = ���
3∗y

y
while r ≥ 2b:

a = 2a
b = 2b

r = r - b

q = q ��*
−2∗a

+a

return q

Localize errors and modify code
to fix bugs

Approach: use dynamic and static
analyses to identify, create, and
validate patches

29

Invariant Generation (DIG)

def intdiv(x, y):
q = 0
r = x
while r ≥ y:
a = 1
b = y
while [??] r ≥ 2b:

a = 2a
b = 2b

r = r - b
q = q + a
[??]
return q

Discover invariant properties
at certain program locations

Answer the question “what
does this program do ?”

Approach: use template and
dynamic analysis

Program Repair (GenProg)

def intdiv(x, y):
q = 0
r = x

while r ��7
̸=

≥ y:
a = 1

b = ���
3∗y

y
while r ≥ 2b:

a = 2a
b = 2b

r = r - b

q = q ��*
−2∗a

+a

return q

Localize errors and modify code
to fix bugs

Approach: use dynamic and static
analyses to identify, create, and
validate patches

29

Awards and Impacts
AI Verification

NSF CAREER (’23—’28)
Amazon Research Award’23
featured in SIGBED
ranked 4th in VNN-COMP’23 (would be 1st now)

Highly-Configurable and Build System Analysis

NSF CISE CRII ’20
NSF Formal Methods in the Field (FMiT) ’23
Meta/Facebook unrestricted gift
Adoption: used internally at Meta Whatsapp to analyze build issues

Invariant Generation and Automatic Program Repair

10-year ACM SIGSOFT/IEEE TCSE Most Influential Paper Award’19
10-year ACM SIGEVO Most Impact Award’19
NSF Medium Collaborative grant ’21–’25
Army Office of Research ’18–’21
Adoption

SV-COMP included benchmarks created by DIG
GrammaTech integrated DIG in Mnemosyne
Facebook and GrammaTech used GenProg in multiple projects

30

Awards and Impacts
AI Verification

NSF CAREER (’23—’28)
Amazon Research Award’23
featured in SIGBED
ranked 4th in VNN-COMP’23 (would be 1st now)

Highly-Configurable and Build System Analysis

NSF CISE CRII ’20
NSF Formal Methods in the Field (FMiT) ’23
Meta/Facebook unrestricted gift
Adoption: used internally at Meta Whatsapp to analyze build issues

Invariant Generation and Automatic Program Repair

10-year ACM SIGSOFT/IEEE TCSE Most Influential Paper Award’19
10-year ACM SIGEVO Most Impact Award’19
NSF Medium Collaborative grant ’21–’25
Army Office of Research ’18–’21
Adoption

SV-COMP included benchmarks created by DIG
GrammaTech integrated DIG in Mnemosyne
Facebook and GrammaTech used GenProg in multiple projects

30

Awards and Impacts
AI Verification

NSF CAREER (’23—’28)
Amazon Research Award’23
featured in SIGBED
ranked 4th in VNN-COMP’23 (would be 1st now)

Highly-Configurable and Build System Analysis

NSF CISE CRII ’20
NSF Formal Methods in the Field (FMiT) ’23
Meta/Facebook unrestricted gift
Adoption: used internally at Meta Whatsapp to analyze build issues

Invariant Generation and Automatic Program Repair

10-year ACM SIGSOFT/IEEE TCSE Most Influential Paper Award’19
10-year ACM SIGEVO Most Impact Award’19
NSF Medium Collaborative grant ’21–’25
Army Office of Research ’18–’21
Adoption

SV-COMP included benchmarks created by DIG
GrammaTech integrated DIG in Mnemosyne
Facebook and GrammaTech used GenProg in multiple projects

30

Future Directions

Currently

focuses on existing problems (robustness, safety)

tested with existing benchmarks

Challenges & Opportunities

new problems

what properties should AI/ML have? (e.g., fairness, privacy, security)
how to formally define such specifications?

new benchmarks (e.g., real-world, industrial data)

new analyses (e.g., automatic property inference and repair for NNs)

31

Future Directions

Currently

focuses on existing problems (robustness, safety)

tested with existing benchmarks

Challenges & Opportunities

new problems

what properties should AI/ML have? (e.g., fairness, privacy, security)
how to formally define such specifications?

new benchmarks (e.g., real-world, industrial data)

new analyses (e.g., automatic property inference and repair for NNs)

31

Funding

8 grants: 4 NSF (3 sole-PI, 1 PI), 1 Defense (Co-PI), 2 industry (sole-PI), 1 internal (sole-PI)

Total $2.65M; my share $1.5M, as PI $1.3M
At GMU (total $1.9M, my/GMU share $1.1M, as PI $1.1M)
Young Faculty: NSF CRII’20, NSF CAREER’23, Amazon Research Award’23

Publications

27 journals/confs. papers since ’16 (11 since joining GMU in ’21)

20 papers with students (9 with undergrad)

Google: 3617 citations (h-index 17 i10-index 24)
SIGSOFT MIP paper award, SIGEVO Impact paper award

Students Mentoring

Current: 3 Ph.D RA’s, 2 undergrads
Graduated (at UNL): 1 PhD, 2 Masters, 11 undergrads (2 Outstanding Undergrad Research
Awards)

Teaching

At GMU (2 years): 1 grad (2x, required, SWE619), 1 undergrad (SWE419), 1 seminar (CS695)
Developed online SWE619 course with Wiley (went live in Spring’23)

Services

Regularly serve in well-known confs/journals, 7 NSF panels in past 5 consec. yrs
At GMU: program director of MS SWE; organize Virtual Open House; maintain CSRankings DB
(GMU is ranked 32!)

32

Funding

8 grants: 4 NSF (3 sole-PI, 1 PI), 1 Defense (Co-PI), 2 industry (sole-PI), 1 internal (sole-PI)

Total $2.65M; my share $1.5M, as PI $1.3M
At GMU (total $1.9M, my/GMU share $1.1M, as PI $1.1M)
Young Faculty: NSF CRII’20, NSF CAREER’23, Amazon Research Award’23

Publications

27 journals/confs. papers since ’16 (11 since joining GMU in ’21)

20 papers with students (9 with undergrad)

Google: 3617 citations (h-index 17 i10-index 24)
SIGSOFT MIP paper award, SIGEVO Impact paper award

Students Mentoring

Current: 3 Ph.D RA’s, 2 undergrads
Graduated (at UNL): 1 PhD, 2 Masters, 11 undergrads (2 Outstanding Undergrad Research
Awards)

Teaching

At GMU (2 years): 1 grad (2x, required, SWE619), 1 undergrad (SWE419), 1 seminar (CS695)
Developed online SWE619 course with Wiley (went live in Spring’23)

Services

Regularly serve in well-known confs/journals, 7 NSF panels in past 5 consec. yrs
At GMU: program director of MS SWE; organize Virtual Open House; maintain CSRankings DB
(GMU is ranked 32!)

32

Funding

8 grants: 4 NSF (3 sole-PI, 1 PI), 1 Defense (Co-PI), 2 industry (sole-PI), 1 internal (sole-PI)

Total $2.65M; my share $1.5M, as PI $1.3M
At GMU (total $1.9M, my/GMU share $1.1M, as PI $1.1M)
Young Faculty: NSF CRII’20, NSF CAREER’23, Amazon Research Award’23

Publications

27 journals/confs. papers since ’16 (11 since joining GMU in ’21)

20 papers with students (9 with undergrad)

Google: 3617 citations (h-index 17 i10-index 24)
SIGSOFT MIP paper award, SIGEVO Impact paper award

Students Mentoring

Current: 3 Ph.D RA’s, 2 undergrads
Graduated (at UNL): 1 PhD, 2 Masters, 11 undergrads (2 Outstanding Undergrad Research
Awards)

Teaching

At GMU (2 years): 1 grad (2x, required, SWE619), 1 undergrad (SWE419), 1 seminar (CS695)
Developed online SWE619 course with Wiley (went live in Spring’23)

Services

Regularly serve in well-known confs/journals, 7 NSF panels in past 5 consec. yrs
At GMU: program director of MS SWE; organize Virtual Open House; maintain CSRankings DB
(GMU is ranked 32!)

32

Funding

8 grants: 4 NSF (3 sole-PI, 1 PI), 1 Defense (Co-PI), 2 industry (sole-PI), 1 internal (sole-PI)

Total $2.65M; my share $1.5M, as PI $1.3M
At GMU (total $1.9M, my/GMU share $1.1M, as PI $1.1M)
Young Faculty: NSF CRII’20, NSF CAREER’23, Amazon Research Award’23

Publications

27 journals/confs. papers since ’16 (11 since joining GMU in ’21)

20 papers with students (9 with undergrad)

Google: 3617 citations (h-index 17 i10-index 24)
SIGSOFT MIP paper award, SIGEVO Impact paper award

Students Mentoring

Current: 3 Ph.D RA’s, 2 undergrads
Graduated (at UNL): 1 PhD, 2 Masters, 11 undergrads (2 Outstanding Undergrad Research
Awards)

Teaching

At GMU (2 years): 1 grad (2x, required, SWE619), 1 undergrad (SWE419), 1 seminar (CS695)
Developed online SWE619 course with Wiley (went live in Spring’23)

Services

Regularly serve in well-known confs/journals, 7 NSF panels in past 5 consec. yrs
At GMU: program director of MS SWE; organize Virtual Open House; maintain CSRankings DB
(GMU is ranked 32!)

32

Funding

8 grants: 4 NSF (3 sole-PI, 1 PI), 1 Defense (Co-PI), 2 industry (sole-PI), 1 internal (sole-PI)

Total $2.65M; my share $1.5M, as PI $1.3M
At GMU (total $1.9M, my/GMU share $1.1M, as PI $1.1M)
Young Faculty: NSF CRII’20, NSF CAREER’23, Amazon Research Award’23

Publications

27 journals/confs. papers since ’16 (11 since joining GMU in ’21)

20 papers with students (9 with undergrad)

Google: 3617 citations (h-index 17 i10-index 24)
SIGSOFT MIP paper award, SIGEVO Impact paper award

Students Mentoring

Current: 3 Ph.D RA’s, 2 undergrads
Graduated (at UNL): 1 PhD, 2 Masters, 11 undergrads (2 Outstanding Undergrad Research
Awards)

Teaching

At GMU (2 years): 1 grad (2x, required, SWE619), 1 undergrad (SWE419), 1 seminar (CS695)
Developed online SWE619 course with Wiley (went live in Spring’23)

Services

Regularly serve in well-known confs/journals, 7 NSF panels in past 5 consec. yrs
At GMU: program director of MS SWE; organize Virtual Open House; maintain CSRankings DB
(GMU is ranked 32!)

32

	AI Safety Verification
	Highly Configurable and Build Systems
	Invariant Generation and Program Repair

